Python for Data Analysts – Telegram
Python for Data Analysts
50.8K subscribers
509 photos
1 video
70 files
315 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Python is a popular programming language in the field of data analysis due to its versatility, ease of use, and extensive libraries for data manipulation, visualization, and analysis. Here are some key Python skills that are important for data analysts:

1. Basic Python Programming: Understanding basic Python syntax, data types, control structures, functions, and object-oriented programming concepts is essential for data analysis in Python.

2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.

3. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data and perform tasks such as filtering, grouping, joining, and reshaping data.

4. Matplotlib and Seaborn: Matplotlib is a versatile library for creating static, interactive, and animated visualizations in Python. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive statistical graphics.

5. Scikit-learn: Scikit-learn is a popular machine learning library in Python that provides tools for building predictive models, performing clustering and classification tasks, and evaluating model performance.

6. Jupyter Notebooks: Jupyter Notebooks are an interactive computing environment that allows you to create and share documents containing live code, equations, visualizations, and narrative text. They are commonly used by data analysts for exploratory data analysis and sharing insights.

7. SQLAlchemy: SQLAlchemy is a Python SQL toolkit and Object-Relational Mapping (ORM) library that provides a high-level interface for interacting with relational databases using Python.

8. Regular Expressions: Regular expressions (regex) are powerful tools for pattern matching and text processing in Python. They are useful for extracting specific information from text data or performing data cleaning tasks.

9. Data Visualization Libraries: In addition to Matplotlib and Seaborn, data analysts may also use other visualization libraries like Plotly, Bokeh, or Altair to create interactive visualizations in Python.

10. Web Scraping: Knowledge of web scraping techniques using libraries like BeautifulSoup or Scrapy can be useful for collecting data from websites for analysis.

By mastering these Python skills and applying them to real-world data analysis projects, you can enhance your proficiency as a data analyst and unlock new opportunities in the field.
3👍2
𝟱 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗦𝗸𝘆𝗿𝗼𝗰𝗸𝗲𝘁 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Whether you’re a beginner, career switcher, or just curious about data analytics, these 5 free online courses are your perfect starting point!🎯

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3FdLMcv

Gain the skills to manage analytics projects✅️
👍2
Data Analyst INTERVIEW QUESTIONS AND ANSWERS
👇👇

1.Can you name the wildcards in Excel?

Ans: There are 3 wildcards in Excel that can ve used in formulas.

Asterisk (*) – 0 or more characters. For example, Ex* could mean Excel, Extra, Expertise, etc.

Question mark (?) – Represents any 1 character. For example, R?ain may mean Rain or Ruin.

Tilde (~) – Used to identify a wildcard character (~, *, ?). For example, If you need to find the exact phrase India* in a list. If you use India* as the search string, you may get any word with India at the beginning followed by different characters (such as Indian, Indiana). If you have to look for India” exclusively, use ~.

Hence, the search string will be india~*. ~ is used to ensure that the spreadsheet reads the following character as is, and not as a wildcard.


2.What is cascading filter in tableau?

Ans: Cascading filters can also be understood as giving preference to a particular filter and then applying other filters on previously filtered data source. Right-click on the filter you want to use as a main filter and make sure it is set as all values in dashboard then select the subsequent filter and select only relevant values to cascade the filters. This will improve the performance of the dashboard as you have decreased the time wasted in running all the filters over complete data source.


3.What is the difference between .twb and .twbx extension?

Ans:
A .twb file contains information on all the sheets, dashboards and stories, but it won’t contain any information regarding data source. Whereas .twbx file contains all the sheets, dashboards, stories and also compressed data sources. For saving a .twbx extract needs to be performed on the data source. If we forward .twb file to someone else than they will be able to see the worksheets and dashboards but won’t be able to look into the dataset.


4.What are the various Power BI versions?

Power BI Premium capacity-based license, for example, allows users with a free license to act on content in workspaces with Premium capacity. A user with a free license can only use the Power BI service to connect to data and produce reports and dashboards in My Workspace outside of Premium capacity. They are unable to exchange material or publish it in other workspaces. To process material, a Power BI license with a free or Pro per-user license only uses a shared and restricted capacity. Users with a Power BI Pro license can only work with other Power BI Pro users if the material is stored in that shared capacity. They may consume user-generated information, post material to app workspaces, share dashboards, and subscribe to dashboards and reports. Pro users can share material with users who don’t have a Power BI Pro subnoscription while workspaces are at Premium capacity.

ENJOY LEARNING 👍👍
👍6
Exploratory Data Analysis ( EDA)
👍42
Python for Data Analysis: Must-Know Libraries 👇👇

Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.

🔥 Essential Python Libraries for Data Analysis:

Pandas – The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.

📌 Example: Loading a CSV file and displaying the first 5 rows:

import pandas as pd df = pd.read_csv('data.csv') print(df.head()) 


NumPy – Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.

📌 Example: Creating an array and performing basic operations:

import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average 


Matplotlib & Seaborn – These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.

📌 Example: Creating a basic bar chart:

import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show() 


Scikit-Learn – A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.

OpenPyXL – Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.

💡 Challenge for You!
Try writing a Python noscript that:
1️⃣ Reads a CSV file
2️⃣ Cleans missing data
3️⃣ Creates a simple visualization

React with ♥️ if you want me to post the noscript for above challenge! ⬇️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍5👏1
𝟯𝟬+ 𝗙𝗿𝗲𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗲𝗱 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗯𝘆 𝗛𝗣 𝗟𝗜𝗙𝗘 𝘁𝗼 𝗦𝘂𝗽𝗲𝗿𝗰𝗵𝗮𝗿𝗴𝗲 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿😍

Whether you’re a student, jobseeker, aspiring entrepreneur, or working professional—HP LIFE offers the perfect opportunity to learn, grow, and earn certifications for free📊🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45ci02k

Join millions of learners worldwide who are already upgrading their skillsets through HP LIFE✅️
👍1
List of Python Project Ideas 👨🏻‍💻🐍 -

Beginner Projects

🔹 Calculator
🔹 To-Do List
🔹 Number Guessing Game
🔹 Basic Web Scraper
🔹 Password Generator
🔹 Flashcard Quizzer
🔹 Simple Chatbot
🔹 Weather App
🔹 Unit Converter
🔹 Rock-Paper-Scissors Game

Intermediate Projects

🔸 Personal Diary
🔸 Web Scraping Tool
🔸 Expense Tracker
🔸 Flask Blog
🔸 Image Gallery
🔸 Chat Application
🔸 API Wrapper
🔸 Markdown to HTML Converter
🔸 Command-Line Pomodoro Timer
🔸 Basic Game with Pygame

Advanced Projects

🔺 Social Media Dashboard
🔺 Machine Learning Model
🔺 Data Visualization Tool
🔺 Portfolio Website
🔺 Blockchain Simulation
🔺 Chatbot with NLP
🔺 Multi-user Blog Platform
🔺 Automated Web Tester
🔺 File Organizer

Python Projects: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

Cool Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502/149
2👍2
Hey guys,

Today, let’s talk about some of the Python questions you might face during a data analyst interview. Below, I’ve compiled the most commonly asked Python questions you should be prepared for in your interviews.

1. Why is Python used in data analysis?

Python is popular for data analysis due to its simplicity, readability, and vast ecosystem of libraries like Pandas, NumPy, Matplotlib, and Scikit-learn. It allows for quick prototyping, data manipulation, and visualization. Moreover, Python integrates seamlessly with other tools like SQL, Excel, and cloud platforms, making it highly versatile for both small-scale analysis and large-scale data engineering.

2. What are the essential libraries used for data analysis in Python?

Some key libraries you’ll use frequently are:

- Pandas: For data manipulation and analysis. It provides data structures like DataFrames, which are perfect for handling tabular data.
- NumPy: For numerical operations. It supports arrays and matrices and includes mathematical functions.
- Matplotlib/Seaborn: For data visualization. Matplotlib allows for creating static, interactive, and animated visualizations, while Seaborn makes creating complex plots easier.
- Scikit-learn: For machine learning. It provides tools for data mining and analysis.

3. What is a Python dictionary, and how is it used in data analysis?

A dictionary in Python is an unordered collection of key-value pairs. It’s extremely useful in data analysis for storing mappings (like labels to corresponding values) or for quick lookups.

Example:
sales = {"January": 12000, "February": 15000, "March": 17000}
print(sales["February"]) # Output: 15000


4. Explain the difference between a list and a tuple in Python.

- List: Mutable, meaning you can modify (add, remove, or change) elements. It’s written in square brackets [ ].

Example:

  my_list = [10, 20, 30]
my_list.append(40)


- Tuple: Immutable, meaning once defined, you cannot modify it. It’s written in parentheses ( ).

Example:

  my_tuple = (10, 20, 30)

5. How would you handle missing data in a dataset using Python?

Handling missing data is critical in data analysis, and Python’s Pandas library makes it easy. Here are some common methods:

- Drop missing data:

  df.dropna()

- Fill missing data with a specific value:

  df.fillna(0)

- Forward-fill or backfill missing values:

  df.fillna(method='ffill')  # Forward-fill
df.fillna(method='bfill') # Backfill

6. How do you merge/join two datasets in Python?

- pd.merge(): For SQL-style joins (inner, outer, left, right).

  df_merged = pd.merge(df1, df2, on='common_column', how='inner')

- pd.concat(): For concatenating along rows or columns.

  df_concat = pd.concat([df1, df2], axis=1)

7. What is the purpose of lambda functions in Python?

A lambda function is an anonymous, single-line function that can be used for quick, simple operations. They are useful when you need a short, throwaway function.

Example:
add = lambda x, y: x + y
print(add(10, 20))  # Output: 30

Lambdas are often used in data analysis for quick transformations or filtering operations within functions like map() or filter().

If you’re preparing for interviews, focus on writing clean, optimized code and understand how Python fits into the larger data ecosystem.

Here you can find essential Python Interview Resources👇
https://news.1rj.ru/str/DataSimplifier

Like for more resources like this 👍 ♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
4👍3
𝗪𝗮𝗻𝘁 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗦𝗸𝗶𝗹𝗹𝘀 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘?😍

YouTube has your back! Here’s a full learning path to take your analytics game from beginner to confident analyst — all through real-world examples and expert walkthroughs💡

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/42UO2OZ

Save this post and start learning step by step!✅️
👍1
Quick Recap of Python Concepts

1️⃣ Variables: Containers for storing data values, like integers, strings, and lists.

2️⃣ Data Types: Includes types like int, float, str, list, tuple, dict, and set to represent different forms of data.

3️⃣ Functions: Blocks of reusable code defined using the def keyword to perform specific tasks.

4️⃣ Loops: for and while loops that allow you to repeat actions until a condition is met.

5️⃣ Conditionals: if, elif, and else statements to execute code based on conditions.

6️⃣ Lists: Ordered collections of items that are mutable, meaning you can change their content after creation.

7️⃣ Dictionaries: Unordered collections of key-value pairs that are useful for fast lookups.

8️⃣ Modules: Pre-written Python code that you can import to add functionality, such as math, os, and datetime.

9️⃣ List Comprehension: A compact way to create lists with conditions and transformations applied to each element.

🔟 Exceptions: Error-handling mechanism using try, except, finally blocks to manage and respond to runtime errors.

Remember, practical application and real-world projects are very important to master these topics. You can refer these amazing resources for Python Interview Preparation.

Like this post if you want me to continue this Python series 👍♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
🥰3👍21
Forwarded from Data Analytics
𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗙𝗥𝗘𝗘 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 😍

Learn directly from industry leaders at Microsoft and LinkedIn Learning and gain in-demand skills to elevate your career

📈 Don’t miss this chance to build your skills, earn certifications, and get job-ready—all for free.

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/41ODJMi

Enroll for FREE & Get Certified 🎓
👍2
For data analysts working with Python, mastering these top 10 concepts is essential:

1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.

2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.

3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.

4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.

5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.

6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.

7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.

8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.

9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.

10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.

Give credits while sharing: https://news.1rj.ru/str/pythonanalyst

ENJOY LEARNING 👍👍
👍1🥰1
𝟳+ 𝗙𝗿𝗲𝗲 𝗚𝗼𝗼𝗴𝗹𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿😍

Here’s your golden chance to upskill with free, industry-recognized certifications from Google—all without spending a rupee!💰📌

These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and more⬇️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3H2YJX7

Tag them or share this post!✅️
👍1
Python for Data Analytics - Quick Cheatsheet with Cod e Example 🚀

1️⃣ Data Manipulation with Pandas

import pandas as pd  
df = pd.read_csv("data.csv")
df.to_excel("output.xlsx")
df.head()
df.info()
df.describe()
df[df["sales"] > 1000]
df[["name", "price"]]
df.fillna(0, inplace=True)
df.dropna(inplace=True)


2️⃣ Numerical Operations with NumPy

import numpy as np  
arr = np.array([1, 2, 3, 4])
print(arr.shape)
np.mean(arr)
np.median(arr)
np.std(arr)


3️⃣ Data Visualization with Matplotlib & Seaborn


import matplotlib.pyplot as plt  
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.bar(["A", "B", "C"], [5, 15, 25])
plt.show()
import seaborn as sns
sns.heatmap(df.corr(), annot=True)
sns.boxplot(x="category", y="sales", data=df)
plt.show()


4️⃣ Exploratory Data Analysis (EDA)

df.isnull().sum()  
df.corr()
sns.histplot(df["sales"], bins=30)
sns.boxplot(y=df["price"])


5️⃣ Working with Databases (SQL + Python)

import sqlite3  
conn = sqlite3.connect("database.db")
df = pd.read_sql("SELECT * FROM sales", conn)
conn.close()
cursor = conn.cursor()
cursor.execute("SELECT AVG(price) FROM products")
result = cursor.fetchone()
print(result)


React with ❤️ for more

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍52
The Foundation of Data Science
👍21
Top AI Algorithms 👆
4👍1
Numpy Cheatsheet 📱
👍31
Underrated Telegram Channel for Data Analysts 👇👇
https://news.1rj.ru/str/sqlspecialist

Here, you will get free tutorials to learn SQL, Python, Power BI, Excel and many more

Hope you guys will like it 😄
2👍2
𝐈𝐦𝐩𝐨𝐫𝐭𝐢𝐧𝐠 𝐍𝐞𝐜𝐞𝐬𝐬𝐚𝐫𝐲 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚𝐬𝐞𝐭:

df = pd.read_csv('your_dataset.csv')

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐃𝐚𝐭𝐚 𝐈𝐧𝐬𝐩𝐞𝐜𝐭𝐢𝐨𝐧:

1- View the first few rows:
df.head()

2- Summary of the dataset:
df.info()

3- Statistical summary:
df.describe()

𝐇𝐚𝐧𝐝𝐥𝐢𝐧𝐠 𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐕𝐚𝐥𝐮𝐞𝐬:

1- Identify missing values:
df.isnull().sum()

2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()

𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:

1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()

2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()

3- Pair plots:
sns.pairplot(df)
plt.show()

4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬:
Count plots for categorical features:

plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()

Python Interview Q&A: https://topmate.io/coding/898340

Like for more ❤️

ENJOY LEARNING 👍👍
👍6
𝟱 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗣𝘆𝘁𝗵𝗼𝗻 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 𝘁𝗼 𝗔𝗱𝗱 𝘁𝗼 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Looking to land an internship, secure a tech job, or start freelancing in 2025?👨‍💻

Python projects are one of the best ways to showcase your skills and stand out in today’s competitive job market🗣📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4kvrfiL

Stand out in today’s competitive job market✅️
👍4
𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗞𝗶𝗰𝗸𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗝𝗼𝘂𝗿𝗻𝗲𝘆 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Ready to upskill in data science for free?🚀

Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/43GspSO

Take the first step towards your dream career!✅️
1👍1