Underrated Telegram Channel for Data Analysts 👇👇
https://news.1rj.ru/str/sqlspecialist
Here, you will get free tutorials to learn SQL, Python, Power BI, Excel and many more
Hope you guys will like it 😄
https://news.1rj.ru/str/sqlspecialist
Here, you will get free tutorials to learn SQL, Python, Power BI, Excel and many more
Hope you guys will like it 😄
Telegram
Data Analytics
Perfect channel to learn Data Analytics
Learn SQL, Python, Alteryx, Tableau, Power BI and many more
For Promotions: @coderfun @love_data
Learn SQL, Python, Alteryx, Tableau, Power BI and many more
For Promotions: @coderfun @love_data
❤2👍2
𝐈𝐦𝐩𝐨𝐫𝐭𝐢𝐧𝐠 𝐍𝐞𝐜𝐞𝐬𝐬𝐚𝐫𝐲 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚𝐬𝐞𝐭:
df = pd.read_csv('your_dataset.csv')
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐃𝐚𝐭𝐚 𝐈𝐧𝐬𝐩𝐞𝐜𝐭𝐢𝐨𝐧:
1- View the first few rows:
df.head()
2- Summary of the dataset:
df.info()
3- Statistical summary:
df.describe()
𝐇𝐚𝐧𝐝𝐥𝐢𝐧𝐠 𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐕𝐚𝐥𝐮𝐞𝐬:
1- Identify missing values:
df.isnull().sum()
2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()
𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:
1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()
2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()
3- Pair plots:
sns.pairplot(df)
plt.show()
4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬:
Count plots for categorical features:
plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()
Python Interview Q&A: https://topmate.io/coding/898340
Like for more ❤️
ENJOY LEARNING 👍👍
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚𝐬𝐞𝐭:
df = pd.read_csv('your_dataset.csv')
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐃𝐚𝐭𝐚 𝐈𝐧𝐬𝐩𝐞𝐜𝐭𝐢𝐨𝐧:
1- View the first few rows:
df.head()
2- Summary of the dataset:
df.info()
3- Statistical summary:
df.describe()
𝐇𝐚𝐧𝐝𝐥𝐢𝐧𝐠 𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐕𝐚𝐥𝐮𝐞𝐬:
1- Identify missing values:
df.isnull().sum()
2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()
𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:
1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()
2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()
3- Pair plots:
sns.pairplot(df)
plt.show()
4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬:
Count plots for categorical features:
plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()
Python Interview Q&A: https://topmate.io/coding/898340
Like for more ❤️
ENJOY LEARNING 👍👍
👍6
𝟱 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗣𝘆𝘁𝗵𝗼𝗻 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 𝘁𝗼 𝗔𝗱𝗱 𝘁𝗼 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Looking to land an internship, secure a tech job, or start freelancing in 2025?👨💻
Python projects are one of the best ways to showcase your skills and stand out in today’s competitive job market🗣📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4kvrfiL
Stand out in today’s competitive job market✅️
Looking to land an internship, secure a tech job, or start freelancing in 2025?👨💻
Python projects are one of the best ways to showcase your skills and stand out in today’s competitive job market🗣📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4kvrfiL
Stand out in today’s competitive job market✅️
👍4
𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗞𝗶𝗰𝗸𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗝𝗼𝘂𝗿𝗻𝗲𝘆 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Ready to upskill in data science for free?🚀
Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43GspSO
Take the first step towards your dream career!✅️
Ready to upskill in data science for free?🚀
Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43GspSO
Take the first step towards your dream career!✅️
❤1👍1
How to get job as python fresher?
1. Get Your Python Fundamentals Strong
You should have a clear understanding of Python syntax, statements, variables & operators, control structures, functions & modules, OOP concepts, exception handling, and various other concepts before going out for a Python interview.
2. Learn Python Frameworks
As a beginner, you’re recommended to start with Django as it is considered the standard framework for Python by many developers. An adequate amount of experience with frameworks will not only help you to dive deeper into the Python world but will also help you to stand out among other Python freshers.
3. Build Some Relevant Projects
You can start it by building several minor projects such as Number guessing game, Hangman Game, Website Blocker, and many others. Also, you can opt to build few advanced-level projects once you’ll learn several Python web frameworks and other trending technologies.
@crackingthecodinginterview
4. Get Exposure to Trending Technologies Using Python.
Python is being used with almost every latest tech trend whether it be Artificial Intelligence, Internet of Things (IOT), Cloud Computing, or any other. And getting exposure to these upcoming technologies using Python will not only make you industry-ready but will also give you an edge over others during a career opportunity.
5. Do an Internship & Grow Your Network.
You need to connect with those professionals who are already working in the same industry in which you are aspiring to get into such as Data Science, Machine learning, Web Development, etc.
Python Interview Q&A: https://topmate.io/coding/898340
Like for more ❤️
ENJOY LEARNING 👍👍
1. Get Your Python Fundamentals Strong
You should have a clear understanding of Python syntax, statements, variables & operators, control structures, functions & modules, OOP concepts, exception handling, and various other concepts before going out for a Python interview.
2. Learn Python Frameworks
As a beginner, you’re recommended to start with Django as it is considered the standard framework for Python by many developers. An adequate amount of experience with frameworks will not only help you to dive deeper into the Python world but will also help you to stand out among other Python freshers.
3. Build Some Relevant Projects
You can start it by building several minor projects such as Number guessing game, Hangman Game, Website Blocker, and many others. Also, you can opt to build few advanced-level projects once you’ll learn several Python web frameworks and other trending technologies.
@crackingthecodinginterview
4. Get Exposure to Trending Technologies Using Python.
Python is being used with almost every latest tech trend whether it be Artificial Intelligence, Internet of Things (IOT), Cloud Computing, or any other. And getting exposure to these upcoming technologies using Python will not only make you industry-ready but will also give you an edge over others during a career opportunity.
5. Do an Internship & Grow Your Network.
You need to connect with those professionals who are already working in the same industry in which you are aspiring to get into such as Data Science, Machine learning, Web Development, etc.
Python Interview Q&A: https://topmate.io/coding/898340
Like for more ❤️
ENJOY LEARNING 👍👍
❤4👍1🥰1
Essential Python Libraries for Data Science
- Numpy: Fundamental for numerical operations, handling arrays, and mathematical functions.
- SciPy: Complements Numpy with additional functionalities for scientific computing, including optimization and signal processing.
- Pandas: Essential for data manipulation and analysis, offering powerful data structures like DataFrames.
- Matplotlib: A versatile plotting library for creating static, interactive, and animated visualizations.
- Keras: A high-level neural networks API, facilitating rapid prototyping and experimentation in deep learning.
- TensorFlow: An open-source machine learning framework widely used for building and training deep learning models.
- Scikit-learn: Provides simple and efficient tools for data mining, machine learning, and statistical modeling.
- Seaborn: Built on Matplotlib, Seaborn enhances data visualization with a high-level interface for drawing attractive and informative statistical graphics.
- Statsmodels: Focuses on estimating and testing statistical models, providing tools for exploring data, estimating models, and statistical testing.
- NLTK (Natural Language Toolkit): A library for working with human language data, supporting tasks like classification, tokenization, stemming, tagging, parsing, and more.
These libraries collectively empower data scientists to handle various tasks, from data preprocessing to advanced machine learning implementations.
ENJOY LEARNING 👍👍
- Numpy: Fundamental for numerical operations, handling arrays, and mathematical functions.
- SciPy: Complements Numpy with additional functionalities for scientific computing, including optimization and signal processing.
- Pandas: Essential for data manipulation and analysis, offering powerful data structures like DataFrames.
- Matplotlib: A versatile plotting library for creating static, interactive, and animated visualizations.
- Keras: A high-level neural networks API, facilitating rapid prototyping and experimentation in deep learning.
- TensorFlow: An open-source machine learning framework widely used for building and training deep learning models.
- Scikit-learn: Provides simple and efficient tools for data mining, machine learning, and statistical modeling.
- Seaborn: Built on Matplotlib, Seaborn enhances data visualization with a high-level interface for drawing attractive and informative statistical graphics.
- Statsmodels: Focuses on estimating and testing statistical models, providing tools for exploring data, estimating models, and statistical testing.
- NLTK (Natural Language Toolkit): A library for working with human language data, supporting tasks like classification, tokenization, stemming, tagging, parsing, and more.
These libraries collectively empower data scientists to handle various tasks, from data preprocessing to advanced machine learning implementations.
ENJOY LEARNING 👍👍
👍7
👉The Ultimate Guide to the Pandas Library for Data Science in Python
👇👇
https://www.freecodecamp.org/news/the-ultimate-guide-to-the-pandas-library-for-data-science-in-python/amp/
A Visual Intro to NumPy and Data Representation
.
Link : 👇👇
https://jalammar.github.io/visual-numpy/
Matplotlib Cheatsheet 👇👇
https://github.com/rougier/matplotlib-cheatsheet
SQL Cheatsheet 👇👇
https://websitesetup.org/sql-cheat-sheet/
👇👇
https://www.freecodecamp.org/news/the-ultimate-guide-to-the-pandas-library-for-data-science-in-python/amp/
A Visual Intro to NumPy and Data Representation
.
Link : 👇👇
https://jalammar.github.io/visual-numpy/
Matplotlib Cheatsheet 👇👇
https://github.com/rougier/matplotlib-cheatsheet
SQL Cheatsheet 👇👇
https://websitesetup.org/sql-cheat-sheet/
👍2
𝟯 𝗙𝗿𝗲𝗲 𝗧𝗖𝗦 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗘𝘃𝗲𝗿𝘆 𝗙𝗿𝗲𝘀𝗵𝗲𝗿 𝗦𝗵𝗼𝘂𝗹𝗱 𝗧𝗮𝗸𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍
👩🎓Just Graduated or Job Hunting?📌
If you’re a fresher aiming to kickstart your career in 2025, these 3 free TCS courses are a must!🎯🎊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4mr0aPm
Each course also comes with a free certificate✅️
👩🎓Just Graduated or Job Hunting?📌
If you’re a fresher aiming to kickstart your career in 2025, these 3 free TCS courses are a must!🎯🎊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4mr0aPm
Each course also comes with a free certificate✅️
👍2
Step-by-Step Approach to Learn Python
➊ Learn the Basics → Syntax, Variables, Data Types (int, float, string, boolean)
↓
➋ Control Flow → If-Else, Loops (For, While), List Comprehensions
↓
➌ Data Structures → Lists, Tuples, Sets, Dictionaries
↓
➍ Functions & Modules → Defining Functions, Lambda Functions, Importing Modules
↓
➎ File Handling → Reading/Writing Files, CSV, JSON
↓
➏ Object-Oriented Programming (OOP) → Classes, Objects, Inheritance, Polymorphism
↓
➐ Error Handling & Debugging → Try-Except, Logging, Debugging Techniques
↓
➑ Advanced Topics → Regular Expressions, Multi-threading, Decorators, Generators
Free Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING 👍👍
➊ Learn the Basics → Syntax, Variables, Data Types (int, float, string, boolean)
↓
➋ Control Flow → If-Else, Loops (For, While), List Comprehensions
↓
➌ Data Structures → Lists, Tuples, Sets, Dictionaries
↓
➍ Functions & Modules → Defining Functions, Lambda Functions, Importing Modules
↓
➎ File Handling → Reading/Writing Files, CSV, JSON
↓
➏ Object-Oriented Programming (OOP) → Classes, Objects, Inheritance, Polymorphism
↓
➐ Error Handling & Debugging → Try-Except, Logging, Debugging Techniques
↓
➑ Advanced Topics → Regular Expressions, Multi-threading, Decorators, Generators
Free Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING 👍👍
👍2❤1
𝗚𝗼𝗼𝗴𝗹𝗲 𝗧𝗼𝗽 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
If you’re job hunting, switching careers, or just want to upgrade your skill set — Google Skillshop is your go-to platform in 2025!
Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics📊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4dwlDT2
Enroll For FREE & Get Certified 🎓️
If you’re job hunting, switching careers, or just want to upgrade your skill set — Google Skillshop is your go-to platform in 2025!
Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics📊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4dwlDT2
Enroll For FREE & Get Certified 🎓️
👍1
Guys, Big Announcement!
We’ve officially hit 2 MILLION followers — and it’s time to take our Python journey to the next level!
I’m super excited to launch the 30-Day Python Coding Challenge — perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python — bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Here’s what you’ll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile noscript)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic — Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs — Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract noscripts from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer noscript)
- Final Project (Choose, build, and polish your app!)
React with ❤️ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
We’ve officially hit 2 MILLION followers — and it’s time to take our Python journey to the next level!
I’m super excited to launch the 30-Day Python Coding Challenge — perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python — bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Here’s what you’ll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile noscript)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic — Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs — Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract noscripts from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer noscript)
- Final Project (Choose, build, and polish your app!)
React with ❤️ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
❤3👍2
Data analytics is not about the the tools you master but about the people you influence.
I see many debates around the best tools such as:
- Excel vs SQL
- Python vs R
- Tableau vs PowerBI
- ChatGPT vs no ChatGPT
The truth is that business doesn't care about how you come up with your insights.
All business cares about is:
- the story line
- how well they can understand it
- your communication style
- the overall feeling after a presentation
These make the difference in being perceived as a great data analyst...
not the tools you may or may not master 😅
I see many debates around the best tools such as:
- Excel vs SQL
- Python vs R
- Tableau vs PowerBI
- ChatGPT vs no ChatGPT
The truth is that business doesn't care about how you come up with your insights.
All business cares about is:
- the story line
- how well they can understand it
- your communication style
- the overall feeling after a presentation
These make the difference in being perceived as a great data analyst...
not the tools you may or may not master 😅
👍5❤3
Python for Everything:
Python + Django = Web Development
Python + Matplotlib = Data Visualization
Python + Flask = Web Applications
Python + Pygame = Game Development
Python + PyQt = Desktop Applications
Python + TensorFlow = Machine Learning
Python + FastAPI = API Development
Python + Kivy = Mobile App Development
Python + Pandas = Data Analysis
Python + NumPy = Scientific Computing
Python + Django = Web Development
Python + Matplotlib = Data Visualization
Python + Flask = Web Applications
Python + Pygame = Game Development
Python + PyQt = Desktop Applications
Python + TensorFlow = Machine Learning
Python + FastAPI = API Development
Python + Kivy = Mobile App Development
Python + Pandas = Data Analysis
Python + NumPy = Scientific Computing
❤4👍1
Useful WhatsApp channels to learn AI Tools 🤖
ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
OpenAI: https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o
Deepseek: https://whatsapp.com/channel/0029Vb9js9sGpLHJGIvX5g1w
Perplexity AI: https://whatsapp.com/channel/0029VbAa05yISTkGgBqyC00U
Copilot: https://whatsapp.com/channel/0029VbAW0QBDOQIgYcbwBd1l
Generative AI: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
Prompt Engineering: https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b
Artificial Intelligence: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
Grok AI: https://whatsapp.com/channel/0029VbAU3pWChq6T5bZxUk1r
Deeplearning AI: https://whatsapp.com/channel/0029VbAKiI1FSAt81kV3lA0t
AI Studio: https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
React ❤️ for more
ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
OpenAI: https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o
Deepseek: https://whatsapp.com/channel/0029Vb9js9sGpLHJGIvX5g1w
Perplexity AI: https://whatsapp.com/channel/0029VbAa05yISTkGgBqyC00U
Copilot: https://whatsapp.com/channel/0029VbAW0QBDOQIgYcbwBd1l
Generative AI: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
Prompt Engineering: https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b
Artificial Intelligence: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
Grok AI: https://whatsapp.com/channel/0029VbAU3pWChq6T5bZxUk1r
Deeplearning AI: https://whatsapp.com/channel/0029VbAKiI1FSAt81kV3lA0t
AI Studio: https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
React ❤️ for more
❤2👍1
SQL INTERVIEW Questions
Explain the concept of window functions in SQL. Provide examples to illustrate their usage.
Answer:
Window Functions:
Window functions perform calculations across a set of table rows related to the current row. Unlike aggregate functions, window functions do not group rows into a single output row; instead, they return a value for each row in the query result.
Types of Window Functions:
1. Aggregate Window Functions: Compute aggregate values like SUM, AVG, COUNT, etc.
2. Ranking Window Functions: Assign a rank to each row, such as RANK(), DENSE_RANK(), and ROW_NUMBER().
3. Analytic Window Functions: Perform calculations like LEAD(), LAG(), FIRST_VALUE(), and LAST_VALUE().
Syntax:
Examples:
1. Using ROW_NUMBER():
Assign a unique number to each row within a partition of the result set.
This query ranks employees within each department based on their salary in descending order.
2. Using AVG() with OVER():
Calculate the average salary within each department without collapsing the result set.
This query returns the average salary for each department along with each employee's salary.
3. Using LEAD():
Access the value of a subsequent row in the result set.
This query retrieves the salary of the next employee within the same department based on the current sorting order.
4. Using RANK():
Assign a rank to each row within the partition, with gaps in the ranking values if there are ties.
This query ranks employees within each department by their salary in descending order, leaving gaps for ties.
Tip: Window functions are powerful for performing calculations across a set of rows while retaining the individual rows. They are useful for running totals, moving averages, ranking, and accessing data from other rows within the same result set.
Go though SQL Learning Series to refresh your basics
Share with credits: https://news.1rj.ru/str/sqlspecialist
Like this post if you want me to continue SQL Interview Preparation Series 👍❤️
Hope it helps :)
Explain the concept of window functions in SQL. Provide examples to illustrate their usage.
Answer:
Window Functions:
Window functions perform calculations across a set of table rows related to the current row. Unlike aggregate functions, window functions do not group rows into a single output row; instead, they return a value for each row in the query result.
Types of Window Functions:
1. Aggregate Window Functions: Compute aggregate values like SUM, AVG, COUNT, etc.
2. Ranking Window Functions: Assign a rank to each row, such as RANK(), DENSE_RANK(), and ROW_NUMBER().
3. Analytic Window Functions: Perform calculations like LEAD(), LAG(), FIRST_VALUE(), and LAST_VALUE().
Syntax:
SELECT column_name,
window_function() OVER (PARTITION BY column_name ORDER BY column_name)
FROM table_name;
Examples:
1. Using ROW_NUMBER():
Assign a unique number to each row within a partition of the result set.
SELECT employee_name, department_id, salary,
ROW_NUMBER() OVER (PARTITION BY department_id ORDER BY salary DESC) AS rank
FROM employees;
This query ranks employees within each department based on their salary in descending order.
2. Using AVG() with OVER():
Calculate the average salary within each department without collapsing the result set.
SELECT employee_name, department_id, salary,
AVG(salary) OVER (PARTITION BY department_id) AS avg_salary
FROM employees;
This query returns the average salary for each department along with each employee's salary.
3. Using LEAD():
Access the value of a subsequent row in the result set.
SELECT employee_name, department_id, salary,
LEAD(salary, 1) OVER (PARTITION BY department_id ORDER BY salary) AS next_salary
FROM employees;
This query retrieves the salary of the next employee within the same department based on the current sorting order.
4. Using RANK():
Assign a rank to each row within the partition, with gaps in the ranking values if there are ties.
SELECT employee_name, department_id, salary,
RANK() OVER (PARTITION BY department_id ORDER BY salary DESC) AS rank
FROM employees;
This query ranks employees within each department by their salary in descending order, leaving gaps for ties.
Tip: Window functions are powerful for performing calculations across a set of rows while retaining the individual rows. They are useful for running totals, moving averages, ranking, and accessing data from other rows within the same result set.
Go though SQL Learning Series to refresh your basics
Share with credits: https://news.1rj.ru/str/sqlspecialist
Like this post if you want me to continue SQL Interview Preparation Series 👍❤️
Hope it helps :)
👍7❤2
🔰 Python Roadmap for Beginners
├── 🐍 Introduction to Python
├── 🧾 Installing Python & Setting Up VS Code / Jupyter
├── ✍️ Python Syntax & Indentation Basics
├── 🔤 Variables, Data Types (int, float, str, bool)
├── ➗ Operators (Arithmetic, Comparison, Logical)
├── 🔁 Conditional Statements (if, elif, else)
├── 🔄 Loops (for, while, break, continue)
├── 🧰 Functions (def, return, args, kwargs)
├── 📦 Built-in Data Structures (List, Tuple, Set, Dictionary)
├── 🧠 List Comprehension & Dictionary Comprehension
├── 📂 File Handling (read, write, with open)
├── 🐞 Error Handling (try, except, finally)
├── 🧱 Modules & Packages (import, pip install)
├── 📊 Working with Libraries (NumPy, Pandas, Matplotlib)
├── 🧹 Data Cleaning with Pandas
├── 🧪 Exploratory Data Analysis (EDA)
├── 🤖 Intro to OOP in Python (Class, Objects, Inheritance)
├── 🧠 Real-World Python Projects & Challenges
SQL Roadmap: https://news.1rj.ru/str/sqlspecialist/1340
Power BI Roadmap: https://news.1rj.ru/str/sqlspecialist/1397
Python Resources: https://news.1rj.ru/str/pythonproz
Hope it helps :)
├── 🐍 Introduction to Python
├── 🧾 Installing Python & Setting Up VS Code / Jupyter
├── ✍️ Python Syntax & Indentation Basics
├── 🔤 Variables, Data Types (int, float, str, bool)
├── ➗ Operators (Arithmetic, Comparison, Logical)
├── 🔁 Conditional Statements (if, elif, else)
├── 🔄 Loops (for, while, break, continue)
├── 🧰 Functions (def, return, args, kwargs)
├── 📦 Built-in Data Structures (List, Tuple, Set, Dictionary)
├── 🧠 List Comprehension & Dictionary Comprehension
├── 📂 File Handling (read, write, with open)
├── 🐞 Error Handling (try, except, finally)
├── 🧱 Modules & Packages (import, pip install)
├── 📊 Working with Libraries (NumPy, Pandas, Matplotlib)
├── 🧹 Data Cleaning with Pandas
├── 🧪 Exploratory Data Analysis (EDA)
├── 🤖 Intro to OOP in Python (Class, Objects, Inheritance)
├── 🧠 Real-World Python Projects & Challenges
SQL Roadmap: https://news.1rj.ru/str/sqlspecialist/1340
Power BI Roadmap: https://news.1rj.ru/str/sqlspecialist/1397
Python Resources: https://news.1rj.ru/str/pythonproz
Hope it helps :)
❤4👍4