Python Projects & Resources – Telegram
Python Projects & Resources
60.8K subscribers
857 photos
342 files
345 links
Perfect channel to learn Python Programming 🇮🇳
Download Free Books & Courses to master Python Programming
- Free Courses
- Projects
- Pdfs
- Bootcamps
- Notes

Admin: @Coderfun
Download Telegram
Top 5 Powerful Python Functions Every Developer Should Know
9👍4
Complete Python Roadmap 🐍👇

1. Introduction to Python
- Definition
- Purpose
- Python Installation
- Interpreter vs Compiler

2. Basic Python Syntax
- Print Statement
- Variables and Data Types
- Input and Output
- Operators

3. Control Flow
- Conditional Statements (if, elif, else)
- Loops (for, while)
- Break and Continue Statements

4. Data Structures
- Lists
- Tuples
- Sets
- Dictionaries

5. Functions
- Function Definition
- Parameters and Return Values
- Lambda Functions

6. File Handling
- Reading from and Writing to Files
- Handling Exceptions

7. Modules and Packages
- Importing Modules
- Creating Packages

8. Object-Oriented Programming (OOP)
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction

9. Error Handling
- Try, Except Blocks
- Custom Exceptions

10. Advanced Data Structures
- List Comprehensions
- Generators
- Collections Module

11. Decorators and Generators
- Function Decorators
- Generator Functions

12. Working with APIs
- Making HTTP Requests
- JSON Handling

13. Database Interaction with Python
- Connecting to Databases
- CRUD Operations

14. Web Development with Flask/Django
- Flask/Django Setup
- Routing and Templates

15. Asynchronous Programming
- Async/Await
- Asyncio Library

16. Testing in Python
- Unit Testing
- Testing Frameworks (e.g., pytest)

17. Pythonic Code
- PEP 8 Style Guide
- Code Readability

18. Version Control (Git)
- Basic Commands
- Collaborative Development

19. Data Science Libraries
- NumPy
- Pandas
- Matplotlib

20. Machine Learning Basics
- Scikit-Learn
- Model Training and Evaluation

21. Web Scraping
- BeautifulSoup
- Scrapy

22. RESTful API Development
- Flask/Django Rest Framework

23. CI/CD Basics
- Continuous Integration
- Continuous Deployment

24. Deployment
- Deploying Python Applications
- Hosting Platforms (e.g., Heroku)

25. Security Best Practices
- Input Validation
- Handling Sensitive Data

26. Code Documentation
- Docstrings
- Generating Documentation

27. Community and Collaboration
- Open Source Contributions
- Forums and Conferences

Resources to Learn Python:

1. Free Course
- https://www.freecodecamp.org/learn/data-analysis-with-python/

2. Projects
- t.me/pythonfreebootcamp/177
- t.me/pythonspecialist/90

3. Books & Notes
- https://news.1rj.ru/str/dsabooks/99
- https://news.1rj.ru/str/dsabooks/101

4. Python Interview Preparation
- https://news.1rj.ru/str/PythonInterviews
- t.me/DataAnalystInterview/63

Join @free4unow_backup for more Python resources.

Like this post if you want more content like this 😄❤️

ENJOY LEARNING
👍👍
19👍15😁2
Data Structure in Python
👍15
Power of List Comprehension 💪
👍6
Python for everything
👍18🔥43😴1
Python list
👍146
Python TensorFlow Roadmap

Stage 1 - Learn Python basics
Stage 2 - Understand ML concepts
Stage 3 - Install TensorFlow, explore Keras & TensorBoard
Stage 4 - Build simple models (regression/classification)
Stage 5 - Learn tensors & computational graphs
Stage 6 - Train deep models (CNNs/RNNs)
Stage 7 - Optimize with GPU/TPU
Stage 8 - Deploy with TensorFlow Lite/Serving

🏆Python TensorFlow Expert
👍9🥰1
Pandas Functions
👍131
Matplotlib Functions
👍13
Python Code to remove Image Background
—————————————————————-
from rembg import remove
from PIL import Image

image_path = 'Image Name' ## ---> Change to Image name

output_image = 'ImageNew' ## ---> Change to new name your image

input = Image.open(image_path)

output = remove(input)

output.save(output_image)
👍9
👍101
Please go through this top 10 SQL projects with Datasets that you can practice and can add in your resume

📌1. Social Media Analytics:
(https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset)

🚀2. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)

📌3. HR Analytics:
(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-
attrition-dataset)

🚀4. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)

📌5. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)

🚀6. Inventory Management:
(https://www.kaggle.com/datasets?
search=inventory+management)

📌 7.Customer Relationship Management:
(https://www.kaggle.com/pankajjsh06/ibm-watson-
marketing-customer-value-data)

🚀8. Financial Data Analysis:
(https://www.kaggle.com/awaiskalia/banking-database)

📌9. Supply Chain Management:
(https://www.kaggle.com/shashwatwork/procurement-analytics)

🚀10. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)

Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since it’s a programming language try to make it more exciting for yourself.

Join for more: https://news.1rj.ru/str/DataPortfolio

Hope this piece of information helps you
👍75