Python Projects & Resources – Telegram
Python Projects & Resources
60.8K subscribers
858 photos
342 files
345 links
Perfect channel to learn Python Programming 🇮🇳
Download Free Books & Courses to master Python Programming
- Free Courses
- Projects
- Pdfs
- Bootcamps
- Notes

Admin: @Coderfun
Download Telegram
Master C programming in 30 days with free resources

Week 1: Basics
1. Days 1-3: Learn the basics of C syntax, data types, and variables.
2. Days 4-7: Study control structures like loops (for, while) and conditional statements (if, switch).

Week 2: Functions and Arrays
3. Days 8-10: Understand functions, how to create them, and pass parameters.
4. Days 11-14: Dive into arrays and how to manipulate them.

Week 3: Pointers and Memory Management
5. Days 15-17: Learn about pointers and their role in C programming.
6. Days 18-21: Study memory management, dynamic memory allocation, and deallocation (malloc, free).

Week 4: File Handling and Advanced Topics
7. Days 22-24: Explore file handling and I/O operations in C.
8. Days 25-28: Learn about more advanced topics like structures, unions, and advanced data structures.
9. Days 29-30: Practice and review what you've learned. Work on small projects to apply your knowledge.

Throughout the 30 days, make sure to:
- Code every day to reinforce your learning.
- Use online resources, tutorials, and textbooks.
- Join C programming communities and forums for help and discussions.
- Solve coding challenges and exercises to test your skills (e.g., HackerRank, LeetCode).
- Document your progress and make notes.

Free Resources to learn C Programming
👇👇

Introduction to C Programming

CS50 Course by Harvard

Master the basics of C Programming

C Programming Project

Let Us C Free Book

Free Interactive C Tutorial

Join @free4unow_backup for more free courses

ENJOY LEARNING 👍👍
👍43
Why Python is a Must-Have Skill?

If you're diving into programming or data science, mastering Python is essential! Its versatility and simplicity make it the go-to language across industries.

◆ Powerful and Versatile From web development to data analysis, Python’s broad libraries and frameworks adapt to almost any project.

◆ Data-Driven Python, combined with libraries like Pandas and NumPy, allows you to analyze and manipulate datasets efficiently.

◆ Automate the Boring Stuff Automate repetitive tasks, streamline workflows, and boost productivity with Python’s easy-to-use noscripts.

◆ AI and Machine Learning With frameworks like TensorFlow and Scikit-learn, Python is at the forefront of AI, enabling you to build predictive models and explore deep learning.

◆ Readable and Beginner-Friendly Python’s simple syntax makes it easy to learn, even for beginners, without sacrificing power and functionality.

◆ Community Support Backed by a massive global community, Python is constantly evolving, with new libraries and resources available at your fingertips.
👍5
Easy Python scenarios for everyday data tasks



Scenario 1: Data Cleaning
Question:
You have a DataFrame containing product prices with columns Product and Price. Some of the prices are stored as strings with a dollar sign, like $10. Write a Python function to convert the prices to float.

Answer:
import pandas as pd
data = {
  'Product': ['A', 'B', 'C', 'D'],
  'Price': ['$10', '$20', '$30', '$40']
}
df = pd.DataFrame(data)

def clean_prices(df):
  df['Price'] = df['Price'].str.replace('$', '').astype(float)
  return df
cleaned_df = clean_prices(df)
print(cleaned_df)

Scenario 2: Basic Aggregation
Question:
You have a DataFrame containing sales data with columns Region and Sales. Write a Python function to calculate the total sales for each region.

Answer:
import pandas as pd
data = {
  'Region': ['North', 'South', 'East', 'West', 'North', 'South', 'East', 'West'],
  'Sales': [100, 200, 150, 250, 300, 100, 200, 150]
}
df = pd.DataFrame(data)

def total_sales_per_region(df):
  total_sales = df.groupby('Region')['Sales'].sum().reset_index()
  return total_sales

total_sales = total_sales_per_region(df)
print(total_sales)

Scenario 3: Filtering Data
Question:
You have a DataFrame containing customer data with columns ‘CustomerID’, Name, and Age. Write a Python function to filter out customers who are younger than 18 years old.

Answer:
import pandas as pd
data = {
  'CustomerID': [1, 2, 3, 4, 5],
  'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
  'Age': [17, 22, 15, 35, 40]
}
df = pd.DataFrame(data)

def filter_customers(df):
  filtered_df = df[df['Age'] >= 18]
  return filtered_df
filtered_customers = filter_customers(df)
print(filtered_customers)
👍10
Exploratory Data Analysis (EDA) in Python involves a variety of techniques and tools to summarize, visualize, and understand the structure of a dataset. Here are some common EDA techniques using Python, along with relevant libraries:
👍1
Python for Cloud Computing Roadmap

Stage 1 – Learn Python (Syntax, OOP)
Stage 2 – Understand Cloud Concepts (IaaS, PaaS, SaaS)
Stage 3 – Work with AWS/Azure SDKs (Boto3, Azure SDK)
Stage 4 – Cloud Storage (S3, Blob Storage)
Stage 5 – Deploy with Docker and Kubernetes
Stage 6 – Implement Serverless (Lambda, Functions)
Stage 7 – Automate Infrastructure (Terraform, CloudFormation)
Stage 8 – Monitor and Scale Cloud Apps
👍6🔥1
How to master Python from scratch🚀

1. Setup and Basics 🏁
   - Install Python 🖥️: Download Python and set it up.
   - Hello, World! 🌍: Write your first Hello World program.

2. Basic Syntax 📜
   - Variables and Data Types 📊: Learn about strings, integers, floats, and booleans.
   - Control Structures 🔄: Understand if-else statements, for loops, and while loops.
   - Functions 🛠️: Write reusable blocks of code.

3. Data Structures 📂
   - Lists 📋: Manage collections of items.
   - Dictionaries 📖: Store key-value pairs.
   - Tuples 📦: Work with immutable sequences.
   - Sets 🔢: Handle collections of unique items.

4. Modules and Packages 📦
   - Standard Library 📚: Explore built-in modules.
   - Third-Party Packages 🌐: Install and use packages with pip.

5. File Handling 📁
   - Read and Write Files 📝
   - CSV and JSON 📑

6. Object-Oriented Programming 🧩
   - Classes and Objects 🏛️
   - Inheritance and Polymorphism 👨‍👩‍👧

7. Web Development 🌐
   - Flask 🍼: Start with a micro web framework.
   - Django 🦄: Dive into a full-fledged web framework.

8. Data Science and Machine Learning 🧠
   - NumPy 📊: Numerical operations.
   - Pandas 🐼: Data manipulation and analysis.
   - Matplotlib 📈 and Seaborn 📊: Data visualization.
   - Scikit-learn 🤖: Machine learning.

9. Automation and Scripting 🤖
   - Automate Tasks 🛠️: Use Python to automate repetitive tasks.
   - APIs 🌐: Interact with web services.

10. Testing and Debugging 🐞
    - Unit Testing 🧪: Write tests for your code.
    - Debugging 🔍: Learn to debug efficiently.

11. Advanced Topics 🚀
    - Concurrency and Parallelism 🕒
    - Decorators 🌀 and Generators ⚙️
    - Web Scraping 🕸️: Extract data from websites using BeautifulSoup and Scrapy.

12. Practice Projects 💡
    - Calculator 🧮
    - To-Do List App 📋
    - Weather App ☀️
    - Personal Blog 📝

13. Community and Collaboration 🤝
    - Contribute to Open Source 🌍
    - Join Coding Communities 💬
    - Participate in Hackathons 🏆

14. Keep Learning and Improving 📈
    - Read Books 📖: Like "Automate the Boring Stuff with Python".
    - Watch Tutorials 🎥: Follow video courses and tutorials.
    - Solve Challenges 🧩: On platforms like LeetCode, HackerRank, and CodeWars.

15. Teach and Share Knowledge 📢
    - Write Blogs ✍️
    - Create Video Tutorials 📹
    - Mentor Others 👨‍🏫

Free Python Cheatsheet: 👇 https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this 👍❤️
👍8
Forwarded from Data Analytics
Which of the following is not a Python Library?
Anonymous Quiz
5%
Pandas
2%
Numpy
6%
Matplotlib
87%
Tableau
👍2
Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.


1. Python Basics
- Variables:
x = 10
y = "Hello"

- Data Types:
  - Integers: x = 10
  - Floats: y = 3.14
  - Strings: name = "Alice"
  - Lists: my_list = [1, 2, 3]
  - Dictionaries: my_dict = {"key": "value"}
  - Tuples: my_tuple = (1, 2, 3)

- Control Structures:
  - if, elif, else statements
  - Loops: 
  
    for i in range(5):
        print(i)
   

  - While loop:
  
    while x < 5:
        print(x)
        x += 1
   

2. Importing Libraries

- NumPy:
  import numpy as np
 

- Pandas:
  import pandas as pd
 

- Matplotlib:
  import matplotlib.pyplot as plt
 

- Seaborn:
  import seaborn as sns
 

3. NumPy for Numerical Data

- Creating Arrays:
  arr = np.array([1, 2, 3, 4])
 

- Array Operations:
  arr.sum()
  arr.mean()
 

- Reshaping Arrays:
  arr.reshape((2, 2))
 

- Indexing and Slicing:
  arr[0:2]  # First two elements
 

4. Pandas for Data Manipulation

- Creating DataFrames:
  df = pd.DataFrame({
      'col1': [1, 2, 3],
      'col2': ['A', 'B', 'C']
  })
 

- Reading Data:
  df = pd.read_csv('file.csv')
 

- Basic Operations:
  df.head()          # First 5 rows
  df.describe()      # Summary statistics
  df.info()          # DataFrame info
 

- Selecting Columns:
  df['col1']
  df[['col1', 'col2']]
 

- Filtering Data:
  df[df['col1'] > 2]
 

- Handling Missing Data:
  df.dropna()        # Drop missing values
  df.fillna(0)       # Replace missing values
 

- GroupBy:
  df.groupby('col2').mean()
 

5. Data Visualization

- Matplotlib:
  plt.plot(df['col1'], df['col2'])
  plt.xlabel('X-axis')
  plt.ylabel('Y-axis')
  plt.noscript('Title')
  plt.show()
 

- Seaborn:
  sns.histplot(df['col1'])
  sns.boxplot(x='col1', y='col2', data=df)
 

6. Common Data Operations

- Merging DataFrames:
  pd.merge(df1, df2, on='key')
 

- Pivot Table:
  df.pivot_table(index='col1', columns='col2', values='col3')
 

- Applying Functions:
  df['col1'].apply(lambda x: x*2)
 

7. Basic Statistics

- Denoscriptive Stats:
  df['col1'].mean()
  df['col1'].median()
  df['col1'].std()
 

- Correlation:
  df.corr()
 

This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.

I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this 👍❤️
👍5🔥2
Don't Confuse to learn Python.

Learn This Concept to be proficient in Python.

𝗕𝗮𝘀𝗶𝗰𝘀 𝗼𝗳 𝗣𝘆𝘁𝗵𝗼𝗻:
- Python Syntax
- Data Types
- Variables
- Operators
- Control Structures:
if-elif-else
Loops
Break and Continue
try-except block
- Functions
- Modules and Packages

𝗢𝗯𝗷𝗲𝗰𝘁-𝗢𝗿𝗶𝗲𝗻𝘁𝗲𝗱 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝗺𝗶𝗻𝗴 𝗶𝗻 𝗣𝘆𝘁𝗵𝗼𝗻:
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction

𝗣𝘆𝘁𝗵𝗼𝗻 𝗟𝗶𝗯𝗿𝗮𝗿𝗶𝗲𝘀:
- Pandas
- Numpy

𝗣𝗮𝗻𝗱𝗮𝘀:
- What is Pandas?
- Installing Pandas
- Importing Pandas
- Pandas Data Structures (Series, DataFrame, Index)

𝗪𝗼𝗿𝗸𝗶𝗻𝗴 𝘄𝗶𝘁𝗵 𝗗𝗮𝘁𝗮𝗙𝗿𝗮𝗺𝗲𝘀:
- Creating DataFrames
- Accessing Data in DataFrames
- Filtering and Selecting Data
- Adding and Removing Columns
- Merging and Joining DataFrames
- Grouping and Aggregating Data
- Pivot Tables

𝗗𝗮𝘁𝗮 𝗖𝗹𝗲𝗮𝗻𝗶𝗻𝗴 𝗮𝗻𝗱 𝗣𝗿𝗲𝗽𝗮𝗿𝗮𝘁𝗶𝗼𝗻:
- Handling Missing Values
- Handling Duplicates
- Data Formatting
- Data Transformation
- Data Normalization

𝗔𝗱𝘃𝗮𝗻𝗰𝗲𝗱 𝗧𝗼𝗽𝗶𝗰𝘀:
- Handling Large Datasets with Dask
- Handling Categorical Data with Pandas
- Handling Text Data with Pandas
- Using Pandas with Scikit-learn
- Performance Optimization with Pandas

𝗗𝗮𝘁𝗮 𝗦𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲𝘀 𝗶𝗻 𝗣𝘆𝘁𝗵𝗼𝗻:
- Lists
- Tuples
- Dictionaries
- Sets

𝗙𝗶𝗹𝗲 𝗛𝗮𝗻𝗱𝗹𝗶𝗻𝗴 𝗶𝗻 𝗣𝘆𝘁𝗵𝗼𝗻:
- Reading and Writing Text Files
- Reading and Writing Binary Files
- Working with CSV Files
- Working with JSON Files

𝗡𝘂𝗺𝗽𝘆:
- What is NumPy?
- Installing NumPy
- Importing NumPy
- NumPy Arrays

𝗡𝘂𝗺𝗣𝘆 𝗔𝗿𝗿𝗮𝘆 𝗢𝗽𝗲𝗿𝗮𝘁𝗶𝗼𝗻𝘀:
- Creating Arrays
- Accessing Array Elements
- Slicing and Indexing
- Reshaping Arrays
- Combining Arrays
- Splitting Arrays
- Arithmetic Operations
- Broadcasting

𝗪𝗼𝗿𝗸𝗶𝗻𝗴 𝘄𝗶𝘁𝗵 𝗗𝗮𝘁𝗮 𝗶𝗻 𝗡𝘂𝗺𝗣𝘆:
- Reading and Writing Data with NumPy
- Filtering and Sorting Data
- Data Manipulation with NumPy
- Interpolation
- Fourier Transforms
- Window Functions

𝗣𝗲𝗿𝗳𝗼𝗿𝗺𝗮𝗻𝗰𝗲 𝗢𝗽𝘁𝗶𝗺𝗶𝘇𝗮𝘁𝗶𝗼𝗻 𝘄𝗶𝘁𝗵 𝗡𝘂𝗺𝗣𝘆:
- Vectorization
- Memory Management
- Multithreading and Multiprocessing
- Parallel Computing

I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this 👍❤️

#Python
👍54
Use Python to turn messy data into valuable insights!

Here are the main functions you need to know:

1. 𝗱𝗿𝗼𝗽𝗻𝗮(): Clean up your dataset by removing missing values. Use df.dropna() to eliminate rows or columns with NaNs and keep your data clean.
   
2. 𝗳𝗶𝗹𝗹𝗻𝗮(): Replace missing values with a specified value or method. With the help of df.fillna(value) you maintain data integrity without losing valuable information.
   
3. 𝗱𝗿𝗼𝗽_𝗱𝘂𝗽𝗹𝗶𝗰𝗮𝘁𝗲𝘀(): Ensure your data is unique and accurate. Use df.drop_duplicates() to remove duplicate rows and avoid skewing your analysis by aggregating redundant data.
   
4. 𝗿𝗲𝗽𝗹𝗮𝗰𝗲(): Substitute specific values throughout your dataset. The function df.replace(to_replace, value) allows for efficient correction of errors and standardization of data.
   
5. 𝗮𝘀𝘁𝘆𝗽𝗲(): Convert data types for consistency and accuracy. Use the cast function df['column'].astype(dtype) to ensure your data columns are in the correct format you need for your analysis.
   
6. 𝗮𝗽𝗽𝗹𝘆(): Apply custom functions to your data. df['column'].apply(func) lets you perform complex transformations and calculations. It works with both standard and lambda functions.
   
7. 𝘀𝘁𝗿.𝘀𝘁𝗿𝗶𝗽(): Clean up text data by removing leading and trailing whitespace. Using df['column'].str.strip() helps you to avoid hard-to-spot errors in string comparisons.
   
8. 𝘃𝗮𝗹𝘂𝗲_𝗰𝗼𝘂𝗻𝘁𝘀(): Get a quick summary of the frequency of values in a column. df['column'].value_counts() helps you understand the distribution of your data.
   
9. 𝗽𝗱.𝘁𝗼_𝗱𝗮𝘁𝗲𝘁𝗶𝗺𝗲(): Convert strings to datetime objects for accurate date and time manipulation. For time series analysis the use of pd.to_datetime(df['column']) will often be one of your first steps in data preparation.
   
10. 𝗴𝗿𝗼𝘂𝗽𝗯𝘆(): Aggregates data based on specific columns. Use df.groupby('column') to perform operations like sum, mean, or count on grouped data.

Learn to use these Python functions, to be able to transform a pile of messy data into the starting point of an impactful analysis.
👍8
Skills to master as a web developer
👇👇
https://news.1rj.ru/str/webdevcoursefree/1497
👍1
I have curated the list of best WhatsApp channels to learn coding & data science for FREE

Free Courses with Certificate: Free Courses With Certificate | WhatsApp Channel (https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g)

Jobs & Internship Opportunities:
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

Web Development: Web Development | WhatsApp Channel (https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z)

Python Free Books & Projects: Python Programming | WhatsApp Channel (https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L)

Java Resources: Java Coding | WhatsApp Channel (https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s)

Coding Interviews: Coding Interview | WhatsApp Channel (https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X)

SQL: SQL For Data Analysis | WhatsApp Channel (https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v)

Power BI: Power BI | WhatsApp Channel (https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c)

Programming Free Resources: Programming Resources | WhatsApp Channel (https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17)

Data Science Projects: Data Science Projects | WhatsApp Channel (https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y)

Learn Data Science & Machine Learning: Data Science and Machine Learning | WhatsApp Channel (https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D)

ENJOY LEARNING 👍👍
👍51
💡 Programming Passion Vs Job
👍51