Artificial Intelligence (AI) is the simulation of human intelligence in machines that are designed to think, learn, and make decisions. From virtual assistants to self-driving cars, AI is transforming how we interact with technology.
Hers is the brief A-Z overview of the terms used in Artificial Intelligence World
A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.
B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.
C - Chatbot: AI software that can hold conversations with users via text or voice.
D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.
E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.
F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.
G - Generative AI: AI that can create new content like text, images, audio, or code.
H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.
I - Image Recognition: The ability of AI to detect and classify objects or features in an image.
J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.
K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.
L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).
M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.
N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.
O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.
P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.
Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.
R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.
S - Supervised Learning: Machine learning where models are trained on labeled datasets.
T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.
U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.
V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.
W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.
X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.
Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.
Z - Zero-shot Learning: The ability of AI to perform tasks it hasn’t been explicitly trained on.
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Hers is the brief A-Z overview of the terms used in Artificial Intelligence World
A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.
B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.
C - Chatbot: AI software that can hold conversations with users via text or voice.
D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.
E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.
F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.
G - Generative AI: AI that can create new content like text, images, audio, or code.
H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.
I - Image Recognition: The ability of AI to detect and classify objects or features in an image.
J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.
K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.
L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).
M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.
N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.
O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.
P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.
Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.
R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.
S - Supervised Learning: Machine learning where models are trained on labeled datasets.
T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.
U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.
V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.
W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.
X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.
Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.
Z - Zero-shot Learning: The ability of AI to perform tasks it hasn’t been explicitly trained on.
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
❤7👍1
The best doesn't come from working more.
It comes from working smarter.
The most common mistakes people make,
With practical tips to avoid each:
1) Working late every night.
• Prioritize quality time with loved ones.
Understand that long hours won't be remembered as fondly as time spent with family and friends.
2) Believing more hours mean more productivity.
• Focus on efficiency.
Complete tasks in less time to free up hours for personal activities and rest.
3) Ignoring the need for breaks.
• Take regular breaks to rejuvenate your mind.
Creativity and productivity suffer without proper rest.
4) Sacrificing personal well-being.
• Maintain a healthy work-life balance.
Ensure you don't compromise your health or relationships for work.
5) Feeling pressured to constantly produce.
• Quality over quantity.
6) Neglecting hobbies and interests.
• Engage in activities you love outside of work.
This helps to keep your mind fresh and inspired.
7) Failing to set boundaries.
• Set clear work hours and stick to them.
This helps to prevent overworking and ensures you have time for yourself.
8) Not delegating tasks.
• Delegate when possible.
Sharing the workload can enhance productivity and give you more free time.
9) Overlooking the importance of sleep.
• Prioritize sleep for better performance.
A well-rested mind is more creative and effective.
10) Underestimating the impact of overworking.
• Recognize the long-term effects.
👉WhatsApp Channel: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
👉 Biggest Data Analytics Telegram Channel: https://news.1rj.ru/str/sqlspecialist
Like for more ❤️
All the best 👍 👍
It comes from working smarter.
The most common mistakes people make,
With practical tips to avoid each:
1) Working late every night.
• Prioritize quality time with loved ones.
Understand that long hours won't be remembered as fondly as time spent with family and friends.
2) Believing more hours mean more productivity.
• Focus on efficiency.
Complete tasks in less time to free up hours for personal activities and rest.
3) Ignoring the need for breaks.
• Take regular breaks to rejuvenate your mind.
Creativity and productivity suffer without proper rest.
4) Sacrificing personal well-being.
• Maintain a healthy work-life balance.
Ensure you don't compromise your health or relationships for work.
5) Feeling pressured to constantly produce.
• Quality over quantity.
6) Neglecting hobbies and interests.
• Engage in activities you love outside of work.
This helps to keep your mind fresh and inspired.
7) Failing to set boundaries.
• Set clear work hours and stick to them.
This helps to prevent overworking and ensures you have time for yourself.
8) Not delegating tasks.
• Delegate when possible.
Sharing the workload can enhance productivity and give you more free time.
9) Overlooking the importance of sleep.
• Prioritize sleep for better performance.
A well-rested mind is more creative and effective.
10) Underestimating the impact of overworking.
• Recognize the long-term effects.
👉WhatsApp Channel: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
👉 Biggest Data Analytics Telegram Channel: https://news.1rj.ru/str/sqlspecialist
Like for more ❤️
All the best 👍 👍
❤8
7 Advanced AI Projects for Beginners
1. Stock Market Forecasting with TimeGPT:- Project
2. Multilingual Automatic Speech Recognition:- Project
3. Image Segmentation Using Text and Image Prompts :- Project
4. Anomaly Detection:- Project
5. AI Plays Super Mario Bros:- Project
6. Fine-tuning Llama 3.2 and Using It Locally:- Project
7. How to Deploy LLM Applications Using Docker:- Project
Join for more: https://news.1rj.ru/str/aichads
1. Stock Market Forecasting with TimeGPT:- Project
2. Multilingual Automatic Speech Recognition:- Project
3. Image Segmentation Using Text and Image Prompts :- Project
4. Anomaly Detection:- Project
5. AI Plays Super Mario Bros:- Project
6. Fine-tuning Llama 3.2 and Using It Locally:- Project
7. How to Deploy LLM Applications Using Docker:- Project
Join for more: https://news.1rj.ru/str/aichads
❤5
App Development Roadmap (2025)
Step-1 Plan Your Idea – Define the app's purpose, features, and target audience.
Step-2 Learn Programming Basics – Start with Python, Java, Swift, or Kotlin.
Step-3 Design UI/UX – Create wireframes using tools like Figma or Adobe XD.
Step-4 Frontend Development – Learn HTML, CSS, and JavaScript for web apps.
Step-5 Backend Development – Master server-side languages (e.g., Python with Flask/Django or Node.js).
Step-6 APIs – Integrate APIs to add functionality (e.g., payments, maps).
Step-7 Databases – Work with SQL (MySQL/PostgreSQL) or NoSQL (MongoDB).
Step-8 Mobile Development – Learn Swift for iOS or Kotlin for Android apps.
Step-9 Cross-Platform Tools – Explore Flutter or React Native for both iOS and Android.
Step-10 Testing – Perform unit & integration testing.
Step-11 Deployment – Publish apps on app stores or deploy web apps to platforms like AWS/Heroku.
🏆 Start Developing Apps Today! 🚀
Step-1 Plan Your Idea – Define the app's purpose, features, and target audience.
Step-2 Learn Programming Basics – Start with Python, Java, Swift, or Kotlin.
Step-3 Design UI/UX – Create wireframes using tools like Figma or Adobe XD.
Step-4 Frontend Development – Learn HTML, CSS, and JavaScript for web apps.
Step-5 Backend Development – Master server-side languages (e.g., Python with Flask/Django or Node.js).
Step-6 APIs – Integrate APIs to add functionality (e.g., payments, maps).
Step-7 Databases – Work with SQL (MySQL/PostgreSQL) or NoSQL (MongoDB).
Step-8 Mobile Development – Learn Swift for iOS or Kotlin for Android apps.
Step-9 Cross-Platform Tools – Explore Flutter or React Native for both iOS and Android.
Step-10 Testing – Perform unit & integration testing.
Step-11 Deployment – Publish apps on app stores or deploy web apps to platforms like AWS/Heroku.
🏆 Start Developing Apps Today! 🚀
❤7
Important questions to ace your machine learning interview with an approach to answer:
1. Machine Learning Project Lifecycle:
- Define the problem
- Gather and preprocess data
- Choose a model and train it
- Evaluate model performance
- Tune and optimize the model
- Deploy and maintain the model
2. Supervised vs Unsupervised Learning:
- Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
- Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).
3. Evaluation Metrics for Regression:
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (coefficient of determination)
4. Overfitting and Prevention:
- Overfitting: Model learns the noise instead of the underlying pattern.
- Prevention: Use simpler models, cross-validation, regularization.
5. Bias-Variance Tradeoff:
- Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.
6. Cross-Validation:
- Technique to assess model performance by splitting data into multiple subsets for training and validation.
7. Feature Selection Techniques:
- Filter methods (e.g., correlation analysis)
- Wrapper methods (e.g., recursive feature elimination)
- Embedded methods (e.g., Lasso regularization)
8. Assumptions of Linear Regression:
- Linearity
- Independence of errors
- Homoscedasticity (constant variance)
- No multicollinearity
9. Regularization in Linear Models:
- Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.
10. Classification vs Regression:
- Classification: Predicts a categorical outcome (e.g., class labels).
- Regression: Predicts a continuous numerical outcome (e.g., house price).
11. Dimensionality Reduction Algorithms:
- Principal Component Analysis (PCA)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
12. Decision Tree:
- Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.
13. Ensemble Methods:
- Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).
14. Handling Missing or Corrupted Data:
- Imputation (e.g., mean substitution)
- Removing rows or columns with missing data
- Using algorithms robust to missing values
15. Kernels in Support Vector Machines (SVM):
- Linear kernel
- Polynomial kernel
- Radial Basis Function (RBF) kernel
Data Science Interview Resources
👇👇
https://topmate.io/coding/914624
Like for more 😄
1. Machine Learning Project Lifecycle:
- Define the problem
- Gather and preprocess data
- Choose a model and train it
- Evaluate model performance
- Tune and optimize the model
- Deploy and maintain the model
2. Supervised vs Unsupervised Learning:
- Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
- Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).
3. Evaluation Metrics for Regression:
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (coefficient of determination)
4. Overfitting and Prevention:
- Overfitting: Model learns the noise instead of the underlying pattern.
- Prevention: Use simpler models, cross-validation, regularization.
5. Bias-Variance Tradeoff:
- Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.
6. Cross-Validation:
- Technique to assess model performance by splitting data into multiple subsets for training and validation.
7. Feature Selection Techniques:
- Filter methods (e.g., correlation analysis)
- Wrapper methods (e.g., recursive feature elimination)
- Embedded methods (e.g., Lasso regularization)
8. Assumptions of Linear Regression:
- Linearity
- Independence of errors
- Homoscedasticity (constant variance)
- No multicollinearity
9. Regularization in Linear Models:
- Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.
10. Classification vs Regression:
- Classification: Predicts a categorical outcome (e.g., class labels).
- Regression: Predicts a continuous numerical outcome (e.g., house price).
11. Dimensionality Reduction Algorithms:
- Principal Component Analysis (PCA)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
12. Decision Tree:
- Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.
13. Ensemble Methods:
- Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).
14. Handling Missing or Corrupted Data:
- Imputation (e.g., mean substitution)
- Removing rows or columns with missing data
- Using algorithms robust to missing values
15. Kernels in Support Vector Machines (SVM):
- Linear kernel
- Polynomial kernel
- Radial Basis Function (RBF) kernel
Data Science Interview Resources
👇👇
https://topmate.io/coding/914624
Like for more 😄
❤9
Python Learning Plan in 2025
|-- Week 1: Introduction to Python
| |-- Python Basics
| | |-- What is Python?
| | |-- Installing Python
| | |-- Introduction to IDEs (Jupyter, VS Code)
| |-- Setting up Python Environment
| | |-- Anaconda Setup
| | |-- Virtual Environments
| | |-- Basic Syntax and Data Types
| |-- First Python Program
| | |-- Writing and Running Python Scripts
| | |-- Basic Input/Output
| | |-- Simple Calculations
|
|-- Week 2: Core Python Concepts
| |-- Control Structures
| | |-- Conditional Statements (if, elif, else)
| | |-- Loops (for, while)
| | |-- Comprehensions
| |-- Functions
| | |-- Defining Functions
| | |-- Function Arguments and Return Values
| | |-- Lambda Functions
| |-- Modules and Packages
| | |-- Importing Modules
| | |-- Standard Library Overview
| | |-- Creating and Using Packages
|
|-- Week 3: Advanced Python Concepts
| |-- Data Structures
| | |-- Lists, Tuples, and Sets
| | |-- Dictionaries
| | |-- Collections Module
| |-- File Handling
| | |-- Reading and Writing Files
| | |-- Working with CSV and JSON
| | |-- Context Managers
| |-- Error Handling
| | |-- Exceptions
| | |-- Try, Except, Finally
| | |-- Custom Exceptions
|
|-- Week 4: Object-Oriented Programming
| |-- OOP Basics
| | |-- Classes and Objects
| | |-- Attributes and Methods
| | |-- Inheritance
| |-- Advanced OOP
| | |-- Polymorphism
| | |-- Encapsulation
| | |-- Magic Methods and Operator Overloading
| |-- Design Patterns
| | |-- Singleton
| | |-- Factory
| | |-- Observer
|
|-- Week 5: Python for Data Analysis
| |-- NumPy
| | |-- Arrays and Vectorization
| | |-- Indexing and Slicing
| | |-- Mathematical Operations
| |-- Pandas
| | |-- DataFrames and Series
| | |-- Data Cleaning and Manipulation
| | |-- Merging and Joining Data
| |-- Matplotlib and Seaborn
| | |-- Basic Plotting
| | |-- Advanced Visualizations
| | |-- Customizing Plots
|
|-- Week 6-8: Specialized Python Libraries
| |-- Web Development
| | |-- Flask Basics
| | |-- Django Basics
| |-- Data Science and Machine Learning
| | |-- Scikit-Learn
| | |-- TensorFlow and Keras
| |-- Automation and Scripting
| | |-- Automating Tasks with Python
| | |-- Web Scraping with BeautifulSoup and Scrapy
| |-- APIs and RESTful Services
| | |-- Working with REST APIs
| | |-- Building APIs with Flask/Django
|
|-- Week 9-11: Real-world Applications and Projects
| |-- Capstone Project
| | |-- Project Planning
| | |-- Data Collection and Preparation
| | |-- Building and Optimizing Models
| | |-- Creating and Publishing Reports
| |-- Case Studies
| | |-- Business Use Cases
| | |-- Industry-specific Solutions
| |-- Integration with Other Tools
| | |-- Python and SQL
| | |-- Python and Excel
| | |-- Python and Power BI
|
|-- Week 12: Post-Project Learning
| |-- Python for Automation
| | |-- Automating Daily Tasks
| | |-- Scripting with Python
| |-- Advanced Python Topics
| | |-- Asyncio and Concurrency
| | |-- Advanced Data Structures
| |-- Continuing Education
| | |-- Advanced Python Techniques
| | |-- Community and Forums
| | |-- Keeping Up with Updates
|
|-- Resources and Community
| |-- Online Courses (Coursera, edX, Udemy)
| |-- Books (Automate the Boring Stuff, Python Crash Course)
| |-- Python Blogs and Podcasts
| |-- GitHub Repositories
| |-- Python Communities (Reddit, Stack Overflow)
Here you can find essential Python Interview Resources👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this 👍♥️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
|-- Week 1: Introduction to Python
| |-- Python Basics
| | |-- What is Python?
| | |-- Installing Python
| | |-- Introduction to IDEs (Jupyter, VS Code)
| |-- Setting up Python Environment
| | |-- Anaconda Setup
| | |-- Virtual Environments
| | |-- Basic Syntax and Data Types
| |-- First Python Program
| | |-- Writing and Running Python Scripts
| | |-- Basic Input/Output
| | |-- Simple Calculations
|
|-- Week 2: Core Python Concepts
| |-- Control Structures
| | |-- Conditional Statements (if, elif, else)
| | |-- Loops (for, while)
| | |-- Comprehensions
| |-- Functions
| | |-- Defining Functions
| | |-- Function Arguments and Return Values
| | |-- Lambda Functions
| |-- Modules and Packages
| | |-- Importing Modules
| | |-- Standard Library Overview
| | |-- Creating and Using Packages
|
|-- Week 3: Advanced Python Concepts
| |-- Data Structures
| | |-- Lists, Tuples, and Sets
| | |-- Dictionaries
| | |-- Collections Module
| |-- File Handling
| | |-- Reading and Writing Files
| | |-- Working with CSV and JSON
| | |-- Context Managers
| |-- Error Handling
| | |-- Exceptions
| | |-- Try, Except, Finally
| | |-- Custom Exceptions
|
|-- Week 4: Object-Oriented Programming
| |-- OOP Basics
| | |-- Classes and Objects
| | |-- Attributes and Methods
| | |-- Inheritance
| |-- Advanced OOP
| | |-- Polymorphism
| | |-- Encapsulation
| | |-- Magic Methods and Operator Overloading
| |-- Design Patterns
| | |-- Singleton
| | |-- Factory
| | |-- Observer
|
|-- Week 5: Python for Data Analysis
| |-- NumPy
| | |-- Arrays and Vectorization
| | |-- Indexing and Slicing
| | |-- Mathematical Operations
| |-- Pandas
| | |-- DataFrames and Series
| | |-- Data Cleaning and Manipulation
| | |-- Merging and Joining Data
| |-- Matplotlib and Seaborn
| | |-- Basic Plotting
| | |-- Advanced Visualizations
| | |-- Customizing Plots
|
|-- Week 6-8: Specialized Python Libraries
| |-- Web Development
| | |-- Flask Basics
| | |-- Django Basics
| |-- Data Science and Machine Learning
| | |-- Scikit-Learn
| | |-- TensorFlow and Keras
| |-- Automation and Scripting
| | |-- Automating Tasks with Python
| | |-- Web Scraping with BeautifulSoup and Scrapy
| |-- APIs and RESTful Services
| | |-- Working with REST APIs
| | |-- Building APIs with Flask/Django
|
|-- Week 9-11: Real-world Applications and Projects
| |-- Capstone Project
| | |-- Project Planning
| | |-- Data Collection and Preparation
| | |-- Building and Optimizing Models
| | |-- Creating and Publishing Reports
| |-- Case Studies
| | |-- Business Use Cases
| | |-- Industry-specific Solutions
| |-- Integration with Other Tools
| | |-- Python and SQL
| | |-- Python and Excel
| | |-- Python and Power BI
|
|-- Week 12: Post-Project Learning
| |-- Python for Automation
| | |-- Automating Daily Tasks
| | |-- Scripting with Python
| |-- Advanced Python Topics
| | |-- Asyncio and Concurrency
| | |-- Advanced Data Structures
| |-- Continuing Education
| | |-- Advanced Python Techniques
| | |-- Community and Forums
| | |-- Keeping Up with Updates
|
|-- Resources and Community
| |-- Online Courses (Coursera, edX, Udemy)
| |-- Books (Automate the Boring Stuff, Python Crash Course)
| |-- Python Blogs and Podcasts
| |-- GitHub Repositories
| |-- Python Communities (Reddit, Stack Overflow)
Here you can find essential Python Interview Resources👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this 👍♥️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤13
Step-by-Step Roadmap to Learn Data Science in 2025:
Step 1: Understand the Role
A data scientist in 2025 is expected to:
Analyze data to extract insights
Build predictive models using ML
Communicate findings to stakeholders
Work with large datasets in cloud environments
Step 2: Master the Prerequisite Skills
A. Programming
Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn
R (optional but helpful for statistical analysis)
SQL: Strong command over data extraction and transformation
B. Math & Stats
Probability, Denoscriptive & Inferential Statistics
Linear Algebra & Calculus (only what's necessary for ML)
Hypothesis testing
Step 3: Learn Data Handling
Data Cleaning, Preprocessing
Exploratory Data Analysis (EDA)
Feature Engineering
Tools: Python (pandas), Excel, SQL
Step 4: Master Machine Learning
Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost
Unsupervised Learning: K-Means, Hierarchical Clustering, PCA
Deep Learning (optional): Use TensorFlow or PyTorch
Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE
Step 5: Learn Data Visualization & Storytelling
Python (matplotlib, seaborn, plotly)
Power BI / Tableau
Communicating insights clearly is as important as modeling
Step 6: Use Real Datasets & Projects
Work on projects using Kaggle, UCI, or public APIs
Examples:
Customer churn prediction
Sales forecasting
Sentiment analysis
Fraud detection
Step 7: Understand Cloud & MLOps (2025+ Skills)
Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure
MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics
Step 8: Build Portfolio & Resume
Create GitHub repos with well-documented code
Post projects and blogs on Medium or LinkedIn
Prepare a data science-specific resume
Step 9: Apply Smartly
Focus on job roles like: Data Scientist, ML Engineer, Data Analyst → DS
Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.
Practice data science interviews: case studies, ML concepts, SQL + Python coding
Step 10: Keep Learning & Updating
Follow top newsletters: Data Elixir, Towards Data Science
Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI
Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)
Free Resources to learn Data Science
Kaggle Courses: https://www.kaggle.com/learn
CS50 AI by Harvard: https://cs50.harvard.edu/ai/
Fast.ai: https://course.fast.ai/
Google ML Crash Course: https://developers.google.com/machine-learning/crash-course
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
Data Science Books: https://news.1rj.ru/str/datalemur
React ❤️ for more
Step 1: Understand the Role
A data scientist in 2025 is expected to:
Analyze data to extract insights
Build predictive models using ML
Communicate findings to stakeholders
Work with large datasets in cloud environments
Step 2: Master the Prerequisite Skills
A. Programming
Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn
R (optional but helpful for statistical analysis)
SQL: Strong command over data extraction and transformation
B. Math & Stats
Probability, Denoscriptive & Inferential Statistics
Linear Algebra & Calculus (only what's necessary for ML)
Hypothesis testing
Step 3: Learn Data Handling
Data Cleaning, Preprocessing
Exploratory Data Analysis (EDA)
Feature Engineering
Tools: Python (pandas), Excel, SQL
Step 4: Master Machine Learning
Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost
Unsupervised Learning: K-Means, Hierarchical Clustering, PCA
Deep Learning (optional): Use TensorFlow or PyTorch
Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE
Step 5: Learn Data Visualization & Storytelling
Python (matplotlib, seaborn, plotly)
Power BI / Tableau
Communicating insights clearly is as important as modeling
Step 6: Use Real Datasets & Projects
Work on projects using Kaggle, UCI, or public APIs
Examples:
Customer churn prediction
Sales forecasting
Sentiment analysis
Fraud detection
Step 7: Understand Cloud & MLOps (2025+ Skills)
Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure
MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics
Step 8: Build Portfolio & Resume
Create GitHub repos with well-documented code
Post projects and blogs on Medium or LinkedIn
Prepare a data science-specific resume
Step 9: Apply Smartly
Focus on job roles like: Data Scientist, ML Engineer, Data Analyst → DS
Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.
Practice data science interviews: case studies, ML concepts, SQL + Python coding
Step 10: Keep Learning & Updating
Follow top newsletters: Data Elixir, Towards Data Science
Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI
Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)
Free Resources to learn Data Science
Kaggle Courses: https://www.kaggle.com/learn
CS50 AI by Harvard: https://cs50.harvard.edu/ai/
Fast.ai: https://course.fast.ai/
Google ML Crash Course: https://developers.google.com/machine-learning/crash-course
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
Data Science Books: https://news.1rj.ru/str/datalemur
React ❤️ for more
❤13
Complete roadmap to learn Python for data analysis
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Denoscriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
👨💻 FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://news.1rj.ru/str/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://news.1rj.ru/str/pythonfreebootcamp/134
7. https://news.1rj.ru/str/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://news.1rj.ru/str/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://news.1rj.ru/str/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING 👍👍
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Denoscriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
👨💻 FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://news.1rj.ru/str/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://news.1rj.ru/str/pythonfreebootcamp/134
7. https://news.1rj.ru/str/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://news.1rj.ru/str/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://news.1rj.ru/str/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING 👍👍
❤7🔥1
Guys, Big Announcement!
We’ve officially hit 2 MILLION followers — and it’s time to take our Python journey to the next level!
I’m super excited to launch the 30-Day Python Coding Challenge — perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python — bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Here’s what you’ll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile noscript)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic — Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs — Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract noscripts from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer noscript)
- Final Project (Choose, build, and polish your app!)
React with ❤️ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
We’ve officially hit 2 MILLION followers — and it’s time to take our Python journey to the next level!
I’m super excited to launch the 30-Day Python Coding Challenge — perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python — bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Here’s what you’ll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile noscript)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic — Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs — Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract noscripts from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer noscript)
- Final Project (Choose, build, and polish your app!)
React with ❤️ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
❤11😁1
Machine Learning isn't easy!
It’s the field that powers intelligent systems and predictive models.
To truly master Machine Learning, focus on these key areas:
0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.
1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.
2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.
3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).
4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.
5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.
6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.
7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.
8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.
9. Staying Updated with New Techniques: Machine learning evolves rapidly—keep up with emerging models, techniques, and research.
Machine learning is about learning from data and improving models over time.
💡 Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.
⏳ With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#datascience
It’s the field that powers intelligent systems and predictive models.
To truly master Machine Learning, focus on these key areas:
0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.
1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.
2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.
3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).
4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.
5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.
6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.
7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.
8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.
9. Staying Updated with New Techniques: Machine learning evolves rapidly—keep up with emerging models, techniques, and research.
Machine learning is about learning from data and improving models over time.
💡 Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.
⏳ With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#datascience
❤2