Python Projects & Free Books – Telegram
Python Projects & Free Books
40.2K subscribers
620 photos
94 files
283 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
List Slicing in Python 👆
👍3
𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗶𝗻 𝗝𝘂𝘀𝘁 𝟯 𝗠𝗼𝗻𝘁𝗵𝘀 𝘄𝗶𝘁𝗵 𝗧𝗵𝗶𝘀 𝗙𝗿𝗲𝗲 𝗚𝗶𝘁𝗛𝘂𝗯 𝗥𝗼𝗮𝗱𝗺𝗮𝗽😍

🎯 Want to Master Data Science in Just 3 Months?📊

Feeling overwhelmed by the sheer volume of resources and don’t know where to start? You’re not alone🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/43uHPrX

This FREE GitHub roadmap is a game-changer for anyone✅️
Numpy Cheatsheet 📱
👍3
Forwarded from Artificial Intelligence
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗛𝗶𝗿𝗶𝗻𝗴 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁𝘀😍

𝗔𝗽𝗽𝗹𝘆 𝗟𝗶𝗻𝗸𝘀:-👇

S&P Global :- https://pdlink.in/3ZddwVz

IBM :- https://pdlink.in/4kDmMKE

TVS Credit :- https://pdlink.in/4mI0JVc

Sutherland :- https://pdlink.in/4mGYBgg

Other Jobs :- https://pdlink.in/44qEIDu

Apply before the link expires 💫
Roadmap to Becoming a Python Developer 🚀

1. Basics 🌱
- Learn programming fundamentals and Python syntax.

2. Core Python 🧠
- Master data structures, functions, and OOP.

3. Advanced Python 📈
- Explore modules, file handling, and exceptions.

4. Web Development 🌐
- Use Django or Flask; build REST APIs.

5. Data Science 📊
- Learn NumPy, pandas, and Matplotlib.

6. Projects & Practice💡
- Build projects, contribute to open-source, join communities.

Like for more ❤️

ENJOY LEARNING 👍👍
👍1
Forwarded from Artificial Intelligence
𝟰 𝗙𝗿𝗲𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Want to Boost Your Resume with In-Demand Python Skills?👨‍💻

In today’s tech-driven world, Python is one of the most in-demand programming languages across data science, software development, and machine learning📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Hnx3wh

Enjoy Learning ✅️
👍1
🔍 Machine Learning Cheat Sheet 🔍

1. Key Concepts:
- Supervised Learning: Learn from labeled data (e.g., classification, regression).
- Unsupervised Learning: Discover patterns in unlabeled data (e.g., clustering, dimensionality reduction).
- Reinforcement Learning: Learn by interacting with an environment to maximize reward.

2. Common Algorithms:
- Linear Regression: Predict continuous values.
- Logistic Regression: Binary classification.
- Decision Trees: Simple, interpretable model for classification and regression.
- Random Forests: Ensemble method for improved accuracy.
- Support Vector Machines: Effective for high-dimensional spaces.
- K-Nearest Neighbors: Instance-based learning for classification/regression.
- K-Means: Clustering algorithm.
- Principal Component Analysis(PCA)

3. Performance Metrics:
- Classification: Accuracy, Precision, Recall, F1-Score, ROC-AUC.
- Regression: Mean Absolute Error (MAE), Mean Squared Error (MSE), R^2 Score.

4. Data Preprocessing:
- Normalization: Scale features to a standard range.
- Standardization: Transform features to have zero mean and unit variance.
- Imputation: Handle missing data.
- Encoding: Convert categorical data into numerical format.

5. Model Evaluation:
- Cross-Validation: Ensure model generalization.
- Train-Test Split: Divide data to evaluate model performance.

6. Libraries:
- Python: Scikit-Learn, TensorFlow, Keras, PyTorch, Pandas, Numpy, Matplotlib.
- R: caret, randomForest, e1071, ggplot2.

7. Tips for Success:
- Feature Engineering: Enhance data quality and relevance.
- Hyperparameter Tuning: Optimize model parameters (Grid Search, Random Search).
- Model Interpretability: Use tools like SHAP and LIME.
- Continuous Learning: Stay updated with the latest research and trends.

🚀 Dive into Machine Learning and transform data into insights! 🚀

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best 👍👍
👍2
Forwarded from Generative AI
𝗠𝗮𝘀𝘁𝗲𝗿 𝟲 𝗜𝗻-𝗗𝗲𝗺𝗮𝗻𝗱 𝗦𝗸𝗶𝗹𝗹𝘀 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘!😍

Want to boost your career with highly sought-after tech skills? These 6 YouTube channels will help you learn from scratch!👨‍💻

No need for expensive courses—start learning for FREE today!🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Ddxd7P

Don’t miss this opportunity—start learning today and take your skills to the next level!✅️
Learning Python for data science can be a rewarding experience. Here are some steps you can follow to get started:

1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.

2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.

3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.

4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.

5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.

6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.

7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.

Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!
👍1
𝗧𝗵𝗲 𝗕𝗲𝘀𝘁 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗖𝗵𝗲𝗮𝘁 𝗦𝗵𝗲𝗲𝘁 𝗼𝗻 𝗚𝗶𝘁𝗛𝘂𝗯 𝗘𝘃𝗲𝗿𝘆 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿 𝗦𝗵𝗼𝘂𝗹𝗱 𝗕𝗼𝗼𝗸𝗺𝗮𝗿𝗸😍

🧠Master Data Science Faster with This Free GitHub Cheat Sheet🚀

Whether you’re starting your data science journey or preparing for job interviews, having the right revision tool can make all the difference🎯

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4klQmF3

Must-have resource for students and professionals✅️
10 Must-Know Python Libraries for LLMs in 2025

1. Hugging Face Transformers
Best for: Pre-trained LLMs, fine-tuning, inference

2. LangChain
Best for: LLM-powered apps, chatbots, AI agents

3. SpaCy
Best for: Tokenization, named entity recognition (NER), dependency parsing

4. Natural Language Toolkit (NLTK)
Best for: Linguistic analysis, tokenization, POS tagging

5. SentenceTransformers
Best for: Semantic search, similarity, clustering

6. FastText
Best for: Word embeddings, text classification

7. Gensim
Best for: Word2Vec, topic modeling, document embeddings

8. Stanza
Best for: Named entity recognition (NER), POS tagging

9. TextBlob
Best for: Sentiment analysis, POS tagging, text processing

10. Polyglot
Best for: Multi-language NLP, named entity recognition, word embeddings
👍1
Forwarded from Artificial Intelligence
𝟱 𝗠𝘂𝘀𝘁-𝗙𝗼𝗹𝗹𝗼𝘄 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 𝗖𝗵𝗮𝗻𝗻𝗲𝗹𝘀 𝗳𝗼𝗿 𝗔𝘀𝗽𝗶𝗿𝗶𝗻𝗴 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Want to Become a Data Scientist in 2025? Start Here!🎯

If you’re serious about becoming a Data Scientist in 2025, the learning doesn’t have to be expensive — or boring!🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4kfBR5q

Perfect for beginners and aspiring pros✅️
Guys, Big Announcement!

We’ve officially hit 2 MILLION followers — and it’s time to take our Python journey to the next level!

I’m super excited to launch the 30-Day Python Coding Challenge — perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.

This challenge is your daily dose of Python — bite-sized lessons with hands-on projects so you actually code every day and level up fast.

Here’s what you’ll learn over the next 30 days:

Week 1: Python Fundamentals

- Variables & Data Types (Build your own bio/profile noscript)

- Operators (Mini calculator to sharpen math skills)

- Strings & String Methods (Word counter & palindrome checker)

- Lists & Tuples (Manage a grocery list like a pro)

- Dictionaries & Sets (Create your own contact book)

- Conditionals (Make a guess-the-number game)

- Loops (Multiplication tables & pattern printing)

Week 2: Functions & Logic — Make Your Code Smarter

- Functions (Prime number checker)

- Function Arguments (Tip calculator with custom tips)

- Recursion Basics (Factorials & Fibonacci series)

- Lambda, map & filter (Process lists efficiently)

- List Comprehensions (Filter odd/even numbers easily)

- Error Handling (Build a safe input reader)

- Review + Mini Project (Command-line to-do list)


Week 3: Files, Modules & OOP

- Reading & Writing Files (Save and load notes)

- Custom Modules (Create your own utility math module)

- Classes & Objects (Student grade tracker)

- Inheritance & OOP (RPG character system)

- Dunder Methods (Build a custom string class)

- OOP Mini Project (Simple bank account system)

- Review & Practice (Quiz app using OOP concepts)


Week 4: Real-World Python & APIs — Build Cool Apps

- JSON & APIs (Fetch weather data)

- Web Scraping (Extract noscripts from HTML)

- Regular Expressions (Find emails & phone numbers)

- Tkinter GUI (Create a simple counter app)

- CLI Tools (Command-line calculator with argparse)

- Automation (File organizer noscript)

- Final Project (Choose, build, and polish your app!)

React with ❤️ if you're ready for this new journey

You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
👍1
🎓 𝗟𝗲𝗮𝗿𝗻 𝗖𝗼𝗺𝗽𝘂𝘁𝗲𝗿 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝗳𝗿𝗼𝗺 𝗛𝗮𝗿𝘃𝗮𝗿𝗱, 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱, 𝗠𝗜𝗧 & 𝗚𝗼𝗼𝗴𝗹𝗲😍

Why pay thousands when you can access world-class Computer Science courses for free? 🌐

Top institutions like Harvard, Stanford, MIT, and Google offer high-quality learning resources to help you master in-demand tech skills👨‍🎓📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3ZyQpFd

Perfect for students, self-learners, and career switchers✅️
9 things every beginner programmer should stop doing:

Copy-pasting code without understanding it

Skipping the fundamentals to learn advanced stuff

🔁 Rewriting the same code instead of reusing functions

📦 Ignoring file/folder structure in projects

⚠️ Not handling errors or exceptions

🧠 Memorizing syntax instead of learning logic

Waiting for the “perfect idea” to start coding

📚 Jumping between tutorials without building anything

💤 Giving up too early when things get hard


#coding #tips
👍2
Forwarded from Web Development
𝗕𝗲𝗰𝗼𝗺𝗲 𝗮 𝗪𝗲𝗯 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗲𝗿 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 — 𝗡𝗼 𝗗𝗲𝗴𝗿𝗲𝗲 𝗡𝗲𝗲𝗱𝗲𝗱!😍

You don’t need a degree or pay lakhs to start a career in web development! 💸

These 100% free courses by Udacity are beginner-friendly and cover everything from frontend to backend👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jCAtJ5

📌 Save this post & tag a friend who’s ready to switch to tech!
Python Interview Questions – Part 1

1. What is Python?
Python is a high-level, interpreted programming language known for its readability and wide range of libraries.

2. Is Python statically typed or dynamically typed?
Dynamically typed. You don't need to declare data types explicitly.

3. What is the difference between a list and a tuple?

List is mutable, can be modified.

Tuple is immutable, cannot be changed after creation.


4. What is indentation in Python?
Indentation is used to define blocks of code. Python strictly relies on indentation instead of brackets {}.

5. What is the output of this code?

x = [1, 2, 3]
print(x * 2)

Answer: [1, 2, 3, 1, 2, 3]

6. Write a Python program to check if a number is even or odd.

num = int(input("Enter number: "))
if num % 2 == 0:
print("Even")
else:
print("Odd")

7. What is a Python dictionary?
A collection of key-value pairs. Example:

person = {"name": "Alice", "age": 25}

8. Write a function to return the square of a number.

def square(n):
return n * n


Coding Interviews: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X

ENJOY LEARNING 👍👍
👍1
𝗦𝗤𝗟 𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍

Looking to master SQL for Data Analytics or prep for your dream tech job? 💼

These 3 Free SQL resources will help you go from beginner to job-ready—without spending a single rupee! 📊

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3TcvfsA

💥 Start learning today and build the skills top companies want!✅️
Python Full Stack Developer Roadmap:

Stage 1: HTML – Learn webpage basics.

Stage 2: CSS – Style web pages.

Stage 3: JavaScript – Add interactivity.

Stage 4: Git + GitHub – Manage code versions.

Stage 5: Frontend Project – Build a simple project.

Stage 6: Python (Core + OOP) – Learn Python fundamentals.

Stage 7: Backend Project – Use Flask/Django for backend.

Stage 8: Frameworks – Master Flask/Django features.
👍2
Forwarded from Artificial Intelligence
𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

𝗦𝗤𝗟:- https://pdlink.in/3TcvfsA

𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:- https://pdlink.in/3Hfpwjc

𝗖𝗼𝗺𝗽𝘂𝘁𝗲𝗿 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:- https://pdlink.in/3ZyQpFd

𝗣𝘆𝘁𝗵𝗼𝗻 :- https://pdlink.in/3Hnx3wh

𝗗𝗲𝘃𝗢𝗽𝘀 :- https://pdlink.in/4jyxBwS

𝗪𝗲𝗯 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 :- https://pdlink.in/4jCAtJ5

Enroll for FREE & Get Certified 🎓
Goldman Sachs senior data analyst interview asked questions

SQL

1 find avg of salaries department wise from table
2 Write a SQL query to see employee name and manager name using a self-join on 'employees' table with columns 'emp_id', 'name', and 'manager_id'.
3 newest joinee for every department (solved using lead lag)

POWER BI

1. What does Filter context in DAX mean?
2. Explain how to implement Row-Level Security (RLS) in Power BI.
3. Describe different types of filters in Power BI.
4. Explain the difference between 'ALL' and 'ALLSELECTED' in DAX.
5. How do you calculate the total sales for a specific product using DAX?

PYTHON

1. Create a dictionary, add elements to it, modify an element, and then print the dictionary in alphabetical order of keys.
2. Find unique values in a list of assorted numbers and print the count of how many times each value is repeated.
3. Find and print duplicate values in a list of assorted numbers, along with the number of times each value is repeated.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://news.1rj.ru/str/DataSimplifier

Hope this helps you 😊
👍1