Python Projects & Free Books – Telegram
Python Projects & Free Books
40.2K subscribers
620 photos
94 files
283 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
𝗜𝗻𝗱𝘂𝘀𝘁𝗿𝘆 𝗔𝗽𝗽𝗿𝗼𝘃𝗲𝗱 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 😍

Whether you’re interested in AI, Data Analytics, Cybersecurity, or Cloud Computing, there’s something here for everyone.

100% Free Courses
Govt. Incentives on Completion
Self-paced Learning
Certificates to Showcase on LinkedIn & Resume
Mock Assessments to Test Your Skills

𝐋𝐢𝐧𝐤 👇:- 

https://pdlink.in/447coEk

Enroll for FREE & Get Certified 🎓
If you want to get a job as a machine learning engineer, don’t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.

Yes, you might hear a lot about them or some other trending technology of the year...but guess what!

Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.

Instead, here are basic skills that will get you further than mastering any framework:


𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.

You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability

𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.

𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.

You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.

𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.

𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.

You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai

I love frameworks and libraries, and they can make anyone's job easier.

But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best 👍👍
Forwarded from Artificial Intelligence
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 & 𝗟𝗲𝗮𝗱𝗶𝗻𝗴 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍

Harward :- https://pdlink.in/4kmYOn1

MIT :- https://pdlink.in/45cvR95

HP :- https://pdlink.in/45ci02k

Google :- https://pdlink.in/3YsujTV

Microsoft :- https://pdlink.in/441GCKF

Standford :- https://pdlink.in/3ThPwNw

IIM :- https://pdlink.in/4nfXDrV

Enroll for FREE & Get Certified 🎓
This is how ML works
👍5
Forwarded from Artificial Intelligence
𝐌𝐢𝐜𝐫𝐨𝐬𝐨𝐟𝐭 𝐅𝐑𝐄𝐄 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐂𝐨𝐮𝐫𝐬𝐞𝐬!🚀💻

Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!

𝐄𝐧𝐫𝐨𝐥𝐥 𝐅𝐨𝐫 𝐅𝐑𝐄𝐄👇 :-

https://bit.ly/3Vlixcq

- Earn certifications to showcase your skills

Don’t wait—start your journey to success today!
Python from scratch
by University of Waterloo

0. Introduction
1. First steps
2. Built-in functions
3. Storing and using information
4. Creating functions
5. Booleans
6. Branching
7. Building better programs
8. Iteration using while
9. Storing elements in a sequence
10. Iteration using for
11. Bundling information into objects
12. Structuring data
13. Recursion

https://open.cs.uwaterloo.ca/python-from-scratch/

#python
👍1
𝗙𝗿𝗲𝗲 𝗔𝗜 & 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗖𝗼𝘂𝗿𝘀𝗲 𝗳𝗼𝗿 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀😍

Want to explore AI & Machine Learning but don’t know where to start — or don’t want to spend ₹₹₹ on it?👨‍💻

Learn the foundations of AI, machine learning basics, data handling, and real-world use cases in just a few hours.📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/401SWry

This 100% FREE course is designed just for beginners — whether you’re a student, fresher, or career switcher✅️
👍1
📈 Predictive Modeling for Future Stock Prices in Python: A Step-by-Step Guide

The process of building a stock price prediction model using Python.

1. Import required modules

2. Obtaining historical data on stock prices

3. Selection of features.

4. Definition of features and target variable

5. Preparing data for training

6. Separation of data into training and test sets

7. Building and training the model

8. Making forecasts

9. Trading Strategy Testing
👍2
𝗣𝗿𝗲𝗽𝗮𝗿𝗶𝗻𝗴 𝗳𝗼𝗿 𝗧𝗲𝗰𝗵 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱? 𝗛𝗲𝗿𝗲’𝘀 𝗬𝗼𝘂𝗿 𝗦𝘁𝗲𝗽-𝗯𝘆-𝗦𝘁𝗲𝗽 𝗥𝗼𝗮𝗱𝗺𝗮𝗽 𝘁𝗼 𝗖𝗿𝗮𝗰𝗸 𝗣𝗿𝗼𝗱𝘂𝗰𝘁-𝗕𝗮𝘀𝗲𝗱 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀!😍

Landing your dream tech job takes more than just writing code — it requires structured preparation across key areas👨‍💻

This roadmap will guide you from zero to offer letter! 💼🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3GdfTS2

This plan works if you stay consistent💪✅️
👍1
Python Interview Questions:

Ready to test your Python skills? Let’s get started! 💻


1. How to check if a string is a palindrome?

def is_palindrome(s):
return s == s[::-1]

print(is_palindrome("madam")) # True
print(is_palindrome("hello")) # False

2. How to find the factorial of a number using recursion?

def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)

print(factorial(5)) # 120

3. How to merge two dictionaries in Python?

dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}

# Method 1 (Python 3.5+)
merged_dict = {**dict1, **dict2}

# Method 2 (Python 3.9+)
merged_dict = dict1 | dict2

print(merged_dict)

4. How to find the intersection of two lists?

list1 = [1, 2, 3, 4]
list2 = [3, 4, 5, 6]

intersection = list(set(list1) & set(list2))
print(intersection) # [3, 4]

5. How to generate a list of even numbers from 1 to 100?

even_numbers = [i for i in range(1, 101) if i % 2 == 0]
print(even_numbers)

6. How to find the longest word in a sentence?

def longest_word(sentence):
words = sentence.split()
return max(words, key=len)

print(longest_word("Python is a powerful language")) # "powerful"

7. How to count the frequency of elements in a list?

from collections import Counter

my_list = [1, 2, 2, 3, 3, 3, 4]
frequency = Counter(my_list)
print(frequency) # Counter({3: 3, 2: 2, 1: 1, 4: 1})

8. How to remove duplicates from a list while maintaining the order?

def remove_duplicates(lst):
return list(dict.fromkeys(lst))

my_list = [1, 2, 2, 3, 4, 4, 5]
print(remove_duplicates(my_list)) # [1, 2, 3, 4, 5]

9. How to reverse a linked list in Python?

class Node:
def __init__(self, data):
self.data = data
self.next = None

def reverse_linked_list(head):
prev = None
current = head
while current:
next_node = current.next
current.next = prev
prev = current
current = next_node
return prev

# Create linked list: 1 -> 2 -> 3
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)

# Reverse and print the list
reversed_head = reverse_linked_list(head)
while reversed_head:
print(reversed_head.data, end=" -> ")
reversed_head = reversed_head.next

10. How to implement a simple binary search algorithm?

def binary_search(arr, target):
low, high = 0, len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1

print(binary_search([1, 2, 3, 4, 5, 6, 7], 4)) # 3


Here you can find essential Python Interview Resources👇
https://news.1rj.ru/str/DataSimplifier

Like for more resources like this 👍 ♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍2
𝗪𝗮𝗻𝘁 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗮 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗣𝗼𝗿𝘁𝗳𝗼𝗹𝗶𝗼 𝗧𝗵𝗮𝘁 𝗚𝗲𝘁𝘀 𝗬𝗼𝘂 𝗛𝗶𝗿𝗲𝗱?😍

If you’re just starting out in data analytics and wondering how to stand out — real-world projects are the key📊

No recruiter is impressed by “just theory.” What they want to see? Actionable proof of your skills👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4ezeIc9

Show recruiters that you don’t just “know” tools — you use them to solve problems✅️
If I wanted to get my opportunity to interview at Google or Amazon for SDE roles in the next 6-8 months…

Here’s exactly how I’d approach it (I’ve taught this to 100s of students and followed it myself to land interviews at 3+ FAANGs):

► Step 1: Learn to Code (from scratch, even if you’re from non-CS background)

I helped my sister go from zero coding knowledge (she studied Biology and Electrical Engineering) to landing a job at Microsoft.

We started with:
- A simple programming language (C++, Java, Python — pick one)
- FreeCodeCamp on YouTube for beginner-friendly lectures
- Key rule: Don’t just watch. Code along with the video line by line.

Time required: 30–40 days to get good with loops, conditions, syntax.

► Step 2: Start with DSA before jumping to development

Why?
- 90% of tech interviews in top companies focus on Data Structures & Algorithms
- You’ll need time to master it, so start early.

Start with:
- Arrays → Linked List → Stacks → Queues
- You can follow the DSA videos on my channel.
- Practice while learning is a must.

► Step 3: Follow a smart topic order

Once you’re done with basics, follow this path:

1. Searching & Sorting
2. Recursion & Backtracking
3. Greedy
4. Sliding Window & Two Pointers
5. Trees & Graphs
6. Dynamic Programming
7. Tries, Heaps, and Union Find

Make revision notes as you go — note down how you solved each question, what tricks worked, and how you optimized it.

► Step 4: Start giving contests (don’t wait till you’re “ready”)

Most students wait to “finish DSA” before attempting contests.
That’s a huge mistake.

Contests teach you:
- Time management under pressure
- Handling edge cases
- Thinking fast

Platforms: LeetCode Weekly/ Biweekly, Codeforces, AtCoder, etc.
And after every contest, do upsolving — solve the questions you couldn’t during the contest.

► Step 5: Revise smart

Create a “Revision Sheet” with 100 key problems you’ve solved and want to reattempt.

Every 2-3 weeks, pick problems randomly and solve again without seeing solutions.

This trains your recall + improves your clarity.

Coding Projects:👇
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502

ENJOY LEARNING 👍👍
👍1
Forwarded from Artificial Intelligence
𝗪𝗮𝗻𝘁 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗜𝗻-𝗗𝗲𝗺𝗮𝗻𝗱 𝗧𝗲𝗰𝗵 𝗦𝗸𝗶𝗹𝗹𝘀 — 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 — 𝗗𝗶𝗿𝗲𝗰𝘁𝗹𝘆 𝗳𝗿𝗼𝗺 𝗚𝗼𝗼𝗴𝗹𝗲?😍

Whether you’re a student, job seeker, or just hungry to upskill — these 5 beginner-friendly courses are your golden ticket🎟️

No fluff. No fees. Just career-boosting knowledge and certificates that make your resume pop✨️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/42vL6br

Enjoy Learning ✅️