Python Projects & Free Books – Telegram
Python Projects & Free Books
40.2K subscribers
620 photos
94 files
283 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
𝗣𝗿𝗲𝗽𝗮𝗿𝗶𝗻𝗴 𝗳𝗼𝗿 𝗧𝗲𝗰𝗵 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱? 𝗛𝗲𝗿𝗲’𝘀 𝗬𝗼𝘂𝗿 𝗦𝘁𝗲𝗽-𝗯𝘆-𝗦𝘁𝗲𝗽 𝗥𝗼𝗮𝗱𝗺𝗮𝗽 𝘁𝗼 𝗖𝗿𝗮𝗰𝗸 𝗣𝗿𝗼𝗱𝘂𝗰𝘁-𝗕𝗮𝘀𝗲𝗱 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀!😍

Landing your dream tech job takes more than just writing code — it requires structured preparation across key areas👨‍💻

This roadmap will guide you from zero to offer letter! 💼🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3GdfTS2

This plan works if you stay consistent💪✅️
👍1
Python Interview Questions:

Ready to test your Python skills? Let’s get started! 💻


1. How to check if a string is a palindrome?

def is_palindrome(s):
return s == s[::-1]

print(is_palindrome("madam")) # True
print(is_palindrome("hello")) # False

2. How to find the factorial of a number using recursion?

def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)

print(factorial(5)) # 120

3. How to merge two dictionaries in Python?

dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}

# Method 1 (Python 3.5+)
merged_dict = {**dict1, **dict2}

# Method 2 (Python 3.9+)
merged_dict = dict1 | dict2

print(merged_dict)

4. How to find the intersection of two lists?

list1 = [1, 2, 3, 4]
list2 = [3, 4, 5, 6]

intersection = list(set(list1) & set(list2))
print(intersection) # [3, 4]

5. How to generate a list of even numbers from 1 to 100?

even_numbers = [i for i in range(1, 101) if i % 2 == 0]
print(even_numbers)

6. How to find the longest word in a sentence?

def longest_word(sentence):
words = sentence.split()
return max(words, key=len)

print(longest_word("Python is a powerful language")) # "powerful"

7. How to count the frequency of elements in a list?

from collections import Counter

my_list = [1, 2, 2, 3, 3, 3, 4]
frequency = Counter(my_list)
print(frequency) # Counter({3: 3, 2: 2, 1: 1, 4: 1})

8. How to remove duplicates from a list while maintaining the order?

def remove_duplicates(lst):
return list(dict.fromkeys(lst))

my_list = [1, 2, 2, 3, 4, 4, 5]
print(remove_duplicates(my_list)) # [1, 2, 3, 4, 5]

9. How to reverse a linked list in Python?

class Node:
def __init__(self, data):
self.data = data
self.next = None

def reverse_linked_list(head):
prev = None
current = head
while current:
next_node = current.next
current.next = prev
prev = current
current = next_node
return prev

# Create linked list: 1 -> 2 -> 3
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)

# Reverse and print the list
reversed_head = reverse_linked_list(head)
while reversed_head:
print(reversed_head.data, end=" -> ")
reversed_head = reversed_head.next

10. How to implement a simple binary search algorithm?

def binary_search(arr, target):
low, high = 0, len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1

print(binary_search([1, 2, 3, 4, 5, 6, 7], 4)) # 3


Here you can find essential Python Interview Resources👇
https://news.1rj.ru/str/DataSimplifier

Like for more resources like this 👍 ♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍2
𝗪𝗮𝗻𝘁 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗮 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗣𝗼𝗿𝘁𝗳𝗼𝗹𝗶𝗼 𝗧𝗵𝗮𝘁 𝗚𝗲𝘁𝘀 𝗬𝗼𝘂 𝗛𝗶𝗿𝗲𝗱?😍

If you’re just starting out in data analytics and wondering how to stand out — real-world projects are the key📊

No recruiter is impressed by “just theory.” What they want to see? Actionable proof of your skills👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4ezeIc9

Show recruiters that you don’t just “know” tools — you use them to solve problems✅️
If I wanted to get my opportunity to interview at Google or Amazon for SDE roles in the next 6-8 months…

Here’s exactly how I’d approach it (I’ve taught this to 100s of students and followed it myself to land interviews at 3+ FAANGs):

► Step 1: Learn to Code (from scratch, even if you’re from non-CS background)

I helped my sister go from zero coding knowledge (she studied Biology and Electrical Engineering) to landing a job at Microsoft.

We started with:
- A simple programming language (C++, Java, Python — pick one)
- FreeCodeCamp on YouTube for beginner-friendly lectures
- Key rule: Don’t just watch. Code along with the video line by line.

Time required: 30–40 days to get good with loops, conditions, syntax.

► Step 2: Start with DSA before jumping to development

Why?
- 90% of tech interviews in top companies focus on Data Structures & Algorithms
- You’ll need time to master it, so start early.

Start with:
- Arrays → Linked List → Stacks → Queues
- You can follow the DSA videos on my channel.
- Practice while learning is a must.

► Step 3: Follow a smart topic order

Once you’re done with basics, follow this path:

1. Searching & Sorting
2. Recursion & Backtracking
3. Greedy
4. Sliding Window & Two Pointers
5. Trees & Graphs
6. Dynamic Programming
7. Tries, Heaps, and Union Find

Make revision notes as you go — note down how you solved each question, what tricks worked, and how you optimized it.

► Step 4: Start giving contests (don’t wait till you’re “ready”)

Most students wait to “finish DSA” before attempting contests.
That’s a huge mistake.

Contests teach you:
- Time management under pressure
- Handling edge cases
- Thinking fast

Platforms: LeetCode Weekly/ Biweekly, Codeforces, AtCoder, etc.
And after every contest, do upsolving — solve the questions you couldn’t during the contest.

► Step 5: Revise smart

Create a “Revision Sheet” with 100 key problems you’ve solved and want to reattempt.

Every 2-3 weeks, pick problems randomly and solve again without seeing solutions.

This trains your recall + improves your clarity.

Coding Projects:👇
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502

ENJOY LEARNING 👍👍
👍1
Forwarded from Artificial Intelligence
𝗪𝗮𝗻𝘁 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗜𝗻-𝗗𝗲𝗺𝗮𝗻𝗱 𝗧𝗲𝗰𝗵 𝗦𝗸𝗶𝗹𝗹𝘀 — 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 — 𝗗𝗶𝗿𝗲𝗰𝘁𝗹𝘆 𝗳𝗿𝗼𝗺 𝗚𝗼𝗼𝗴𝗹𝗲?😍

Whether you’re a student, job seeker, or just hungry to upskill — these 5 beginner-friendly courses are your golden ticket🎟️

No fluff. No fees. Just career-boosting knowledge and certificates that make your resume pop✨️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/42vL6br

Enjoy Learning ✅️
A-Z of essential data science concepts

A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.

Data Science Interview Resources
👇👇
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like for more 😄
👍1
Data Science Roadmap
👍1
𝗛𝗮𝗿𝘃𝗮𝗿𝗱 𝗝𝘂𝘀𝘁 𝗥𝗲𝗹𝗲𝗮𝘀𝗲𝗱 𝟱 𝗙𝗥𝗘𝗘 𝗧𝗲𝗰𝗵 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗬𝗼𝘂 𝗖𝗮𝗻’𝘁 𝗠𝗶𝘀𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱!😍

🚨 Harvard just dropped 5 FREE online tech courses — no fees, no catches!📌

Whether you’re just starting out or upskilling for a tech career, this is your chance to learn from one of the world’s top universities — for FREE. 🌍

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4eA368I

💡Learn at your own pace, earn certificates, and boost your resume✅️
List of Frontend Project Ideas 💡👨🏻‍💻

Beginner Projects

🔹 Personal Portfolio Website
🔹 Responsive Landing Page
🔹 Simple Calculator
🔹 To-Do List App
🔹 Weather App

Intermediate Projects

🔸 Blog Website
🔸 E-commerce Product Page
🔸 Recipe Finder App
🔸 Interactive Chat App
🔸 Music Player

Advanced Projects

🔺 Social Media Dashboard
🔺 Real-time Chat Application
🔺 Multi-page E-commerce Website
🔺 Dynamic Data Visualization Dashboard

React "❤️" For More
👍3
Forwarded from Artificial Intelligence
𝗨𝗽𝘀𝗸𝗶𝗹𝗹 𝗙𝗮𝘀𝘁: 𝗟𝗲𝗮𝗿𝗻 𝗧𝗲𝗰𝗵 𝗦𝗸𝗶𝗹𝗹𝘀 𝘄𝗶𝘁𝗵 𝗣𝗿𝗼𝗷𝗲𝗰𝘁-𝗕𝗮𝘀𝗲𝗱 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗶𝗻 𝗝𝘂𝘀𝘁 𝟯𝟬 𝗗𝗮𝘆𝘀!😍

Level up your tech skills in just 30 days! 💻👨‍🎓

Whether you’re a beginner, student, or planning a career switch, this platform offers project-based courses👨‍💻✨️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3U2nBl4

Start today and you’ll be 10x more confident by the end of it!✅️
👍1
💸 SQL vs. NoSQL
👍1
Git Commands

🛠 git init – Initialize a new Git repository
📥 git clone <repo> – Clone a repository
📊 git status – Check the status of your repository
git add <file> – Add a file to the staging area
📝 git commit -m "message" – Commit changes with a message
🚀 git push – Push changes to a remote repository
⬇️ git pull – Fetch and merge changes from a remote repository


Branching

📌 git branch – List all branches
🌱 git branch <name> – Create a new branch
🔄 git checkout <branch> – Switch to a branch
🔗 git merge <branch> – Merge a branch into the current branch
⚡️ git rebase <branch> – Apply commits on top of another branch


Undo & Fix Mistakes

git reset --soft HEAD~1 – Undo the last commit but keep changes
git reset --hard HEAD~1 – Undo the last commit and discard changes
🔄 git revert <commit> – Create a new commit that undoes a specific commit


Logs & History

📖 git log – Show commit history
🌐 git log --oneline --graph --all – View commit history in a simple graph


Stashing

📥 git stash – Save changes without committing
🎭 git stash pop – Apply stashed changes and remove them from stash


Remote & Collaboration

🌍 git remote -v – View remote repositories
📡 git fetch – Fetch changes without merging
🕵️ git diff – Compare changes


Don’t forget to react ❤️ if you’d like to see more content like this!
👍4
Forwarded from Artificial Intelligence
𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁’𝘀 𝗙𝗥𝗘𝗘 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁𝘀 𝗖𝗼𝘂𝗿𝘀𝗲 – 𝗟𝗲𝗮𝗿𝗻 𝗛𝗼𝘄 𝘁𝗵𝗲 𝗙𝘂𝘁𝘂𝗿𝗲 𝗼𝗳 𝗔𝗜 𝗪𝗼𝗿𝗸𝘀😍

🚨 Microsoft just dropped a brand-new FREE course on AI Agents — and it’s a must-watch!📲

If you’ve ever wondered how AI copilots, autonomous agents, and decision-making systems actually work👨‍🎓💫

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4kuGLLe

This course is your launchpad into the future of artificial intelligence✅️
9 tips to learn Python for Data Analysis:

🐍 Start with the basics: variables, loops, functions

🧹 Master Pandas for data manipulation

🔢 Use NumPy for numerical operations

📊 Visualize data with Matplotlib and Seaborn

📂 Work with real datasets (CSV, Excel, APIs)

🧼 Clean and preprocess messy data

📈 Understand basic statistics and correlations

⚙️ Automate repetitive analysis tasks with noscripts

💡 Build mini-projects to apply your skills

Free Python Resources: https://news.1rj.ru/str/pythonanalyst

Like for more daily tips 👍 ♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍2
𝗪𝗶𝗽𝗿𝗼’𝘀 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗔𝗰𝗰𝗲𝗹𝗲𝗿𝗮𝘁𝗼𝗿: 𝗬𝗼𝘂𝗿 𝗙𝗮𝘀𝘁-𝗧𝗿𝗮𝗰𝗸 𝘁𝗼 𝗮 𝗗𝗮𝘁𝗮 𝗖𝗮𝗿𝗲𝗲𝗿!😍

Want to break into Data Science but don’t have a degree or years of experience? Wipro just made it easier than ever!👨‍🎓✨️

With the Wipro Data Science Accelerator, you can start learning for FREE—no fancy credentials needed. Whether you’re a beginner or an aspiring data professional👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4hOXcR7

Ready to start? Explore Wipro’s Data Science Accelerator here✅️
Want to become a Data Scientist?

Here’s a quick roadmap with essential concepts:

1. Mathematics & Statistics

Linear Algebra: Matrix operations, eigenvalues, eigenvectors, and decomposition, which are crucial for machine learning.

Probability & Statistics: Hypothesis testing, probability distributions, Bayesian inference, confidence intervals, and statistical significance.

Calculus: Derivatives, integrals, and gradients, especially partial derivatives, which are essential for understanding model optimization.


2. Programming

Python or R: Choose a primary programming language for data science.

Python: Libraries like NumPy, Pandas for data manipulation, and Scikit-Learn for machine learning.

R: Especially popular in academia and finance, with libraries like dplyr and ggplot2 for data manipulation and visualization.


SQL: Master querying and database management, essential for accessing, joining, and filtering large datasets.


3. Data Wrangling & Preprocessing

Data Cleaning: Handle missing values, outliers, duplicates, and data formatting.
Feature Engineering: Create meaningful features, handle categorical variables, and apply transformations (scaling, encoding, etc.).
Exploratory Data Analysis (EDA): Visualize data distributions, correlations, and trends to generate hypotheses and insights.


4. Data Visualization

Python Libraries: Use Matplotlib, Seaborn, and Plotly to visualize data.
Tableau or Power BI: Learn interactive visualization tools for building dashboards.
Storytelling: Develop skills to interpret and present data in a meaningful way to stakeholders.


5. Machine Learning

Supervised Learning: Understand algorithms like Linear Regression, Logistic Regression, Decision Trees, Random Forest, Gradient Boosting, and Support Vector Machines (SVM).
Unsupervised Learning: Study clustering (K-means, DBSCAN) and dimensionality reduction (PCA, t-SNE).
Evaluation Metrics: Understand accuracy, precision, recall, F1-score for classification and RMSE, MAE for regression.


6. Advanced Machine Learning & Deep Learning

Neural Networks: Understand the basics of neural networks and backpropagation.
Deep Learning: Get familiar with Convolutional Neural Networks (CNNs) for image processing and Recurrent Neural Networks (RNNs) for sequential data.
Transfer Learning: Apply pre-trained models for specific use cases.
Frameworks: Use TensorFlow Keras for building deep learning models.


7. Natural Language Processing (NLP)

Text Preprocessing: Tokenization, stemming, lemmatization, stop-word removal.
NLP Techniques: Understand bag-of-words, TF-IDF, and word embeddings (Word2Vec, GloVe).
NLP Models: Work with recurrent neural networks (RNNs), transformers (BERT, GPT) for text classification, sentiment analysis, and translation.


8. Big Data Tools (Optional)

Distributed Data Processing: Learn Hadoop and Spark for handling large datasets. Use Google BigQuery for big data storage and processing.


9. Data Science Workflows & Pipelines (Optional)

ETL & Data Pipelines: Extract, Transform, and Load data using tools like Apache Airflow for automation. Set up reproducible workflows for data transformation, modeling, and monitoring.
Model Deployment: Deploy models in production using Flask, FastAPI, or cloud services (AWS SageMaker, Google AI Platform).


10. Model Validation & Tuning

Cross-Validation: Techniques like K-fold cross-validation to avoid overfitting.
Hyperparameter Tuning: Use Grid Search, Random Search, and Bayesian Optimization to optimize model performance.
Bias-Variance Trade-off: Understand how to balance bias and variance in models for better generalization.


11. Time Series Analysis

Statistical Models: ARIMA, SARIMA, and Holt-Winters for time-series forecasting.
Time Series: Handle seasonality, trends, and lags. Use LSTMs or Prophet for more advanced time-series forecasting.


12. Experimentation & A/B Testing

Experiment Design: Learn how to set up and analyze controlled experiments.
A/B Testing: Statistical techniques for comparing groups & measuring the impact of changes.

ENJOY LEARNING 👍👍

#datascience
𝗛𝗶𝗱𝗱𝗲𝗻 𝗚𝗲𝗺 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗳𝗿𝗼𝗺 𝗠𝗜𝗧, 𝗛𝗮𝗿𝘃𝗮𝗿𝗱 & 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱!😍

Still searching for quality learning resources?📚

What if I told you there’s a platform offering free full-length courses from top universities like MIT, Stanford, and Harvard — and most people have never even heard of it? 🤯

𝗟𝗶𝗻𝗸𝘀:-👇

https://pdlink.in/4lN7aF1

Don’t skip this chance✅️
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗥𝗼𝗮𝗱𝗺𝗮𝗽

𝟭. 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝗺𝗶𝗻𝗴 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲𝘀: Master Python, SQL, and R for data manipulation and analysis.

𝟮. 𝗗𝗮𝘁𝗮 𝗠𝗮𝗻𝗶𝗽𝘂𝗹𝗮𝘁𝗶𝗼𝗻 𝗮𝗻𝗱 𝗣𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴: Use Excel, Pandas, and ETL tools like Alteryx and Talend for data processing.

𝟯. 𝗗𝗮𝘁𝗮 𝗩𝗶𝘀𝘂𝗮𝗹𝗶𝘇𝗮𝘁𝗶𝗼𝗻: Learn Tableau, Power BI, and Matplotlib/Seaborn for creating insightful visualizations.

𝟰. 𝗦𝘁𝗮𝘁𝗶𝘀𝘁𝗶𝗰𝘀 𝗮𝗻𝗱 𝗠𝗮𝘁𝗵𝗲𝗺𝗮𝘁𝗶𝗰𝘀: Understand Denoscriptive and Inferential Statistics, Probability, Regression, and Time Series Analysis.

𝟱. 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴: Get proficient in Supervised and Unsupervised Learning, along with Time Series Forecasting.

𝟲. 𝗕𝗶𝗴 𝗗𝗮𝘁𝗮 𝗧𝗼𝗼𝗹𝘀: Utilize Google BigQuery, AWS Redshift, and NoSQL databases like MongoDB for large-scale data management.

𝟳. 𝗠𝗼𝗻𝗶𝘁𝗼𝗿𝗶𝗻𝗴 𝗮𝗻𝗱 𝗥𝗲𝗽𝗼𝗿𝘁𝗶𝗻𝗴: Implement Data Quality Monitoring (Great Expectations) and Performance Tracking (Prometheus, Grafana).

𝟴. 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗧𝗼𝗼𝗹𝘀: Work with Data Orchestration tools (Airflow, Prefect) and visualization tools like D3.js and Plotly.

𝟵. 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲 𝗠𝗮𝗻𝗮𝗴𝗲𝗿: Manage resources using Jupyter Notebooks and Power BI.

𝟭𝟬. 𝗗𝗮𝘁𝗮 𝗚𝗼𝘃𝗲𝗿𝗻𝗮𝗻𝗰𝗲 𝗮𝗻𝗱 𝗘𝘁𝗵𝗶𝗰𝘀: Ensure compliance with GDPR, Data Privacy, and Data Quality standards.

𝟭𝟭. 𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴: Leverage AWS, Google Cloud, and Azure for scalable data solutions.

𝟭𝟮. 𝗗𝗮𝘁𝗮 𝗪𝗿𝗮𝗻𝗴𝗹𝗶𝗻𝗴 𝗮𝗻𝗱 𝗖𝗹𝗲𝗮𝗻𝗶𝗻𝗴: Master data cleaning (OpenRefine, Trifacta) and transformation techniques.

Data Analytics Resources
👇👇
https://news.1rj.ru/str/sqlspecialist

Hope this helps you 😊
👍1
Forwarded from Artificial Intelligence
𝟯 𝗙𝗥𝗘𝗘 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗦𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱!😍

Want to break into Data Analytics but don’t know where to start? 🤔

These 3 beginner-friendly and 100% FREE courses will help you build real skills — no degree required!👨‍🎓

𝗟𝗶𝗻𝗸:-👇

https://pdlink.in/3IohnJO

No confusion, no fluff — just pure value✅️
𝟲 𝗥𝗲𝗮𝗹-𝗪𝗼𝗿𝗹𝗱 𝗦𝗤𝗟 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗣𝗼𝗿𝘁𝗳𝗼𝗹𝗶𝗼 (𝗙𝗥𝗘𝗘 𝗗𝗮𝘁𝗮𝘀𝗲𝘁𝘀!)😍

🎯 Want to level up your SQL skills with real business scenarios?📚

These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/40kF1x0

Save this post — even completing 1 project can power up your SQL profile!✅️
👍1