Python Projects & Free Books – Telegram
Python Projects & Free Books
40.3K subscribers
620 photos
94 files
284 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
Python Basics to Advanced Notes.pdf
8.7 MB
🔰 FREE HANDWRITTEN Python Basics to Advanced Notes📚👨🏻‍💻

React ❤️ for more like this
👍7
Forwarded from Artificial Intelligence
𝗚𝗼𝗼𝗴𝗹𝗲 𝗙𝗥𝗘𝗘 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

Ever wondered how machines describe images in words?💻

Want to get hands-on with cutting-edge AI and computer vision — for FREE?🎊

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/42FaT0Y

🎯 Start Learning AI for FREE
👍1
Preparing for a data science interview can be challenging, but with the right approach, you can increase your chances of success. Here are some tips to help you prepare for your next data science interview:

👉 1. Review the Fundamentals: Make sure you have a thorough understanding of the fundamentals of statistics, probability, and linear algebra. You should also be familiar with data structures, algorithms, and programming languages like Python, R, and SQL.

👉 2. Brush up on Machine Learning: Machine learning is a key aspect of data science. Make sure you have a solid understanding of different types of machine learning algorithms like supervised, unsupervised, and reinforcement learning.

👉 3. Practice Coding: Practice coding questions related to data structures, algorithms, and data science problems. You can use online resources like HackerRank, LeetCode, and Kaggle to practice.

👉 4. Build a Portfolio: Create a portfolio of projects that demonstrate your data science skills. This can include data cleaning, data wrangling, exploratory data analysis, and machine learning projects.

👉 5. Practice Communication: Data scientists are expected to effectively communicate complex technical concepts to non-technical stakeholders. Practice explaining your projects and technical concepts in simple terms.

👉 6. Research the Company: Research the company you are interviewing with and their industry. Understand how they use data and what data science problems they are trying to solve.

By following these tips, you can be well-prepared for your next data science interview. Good luck!
👍3
Forwarded from Artificial Intelligence
𝟳 𝗙𝗿𝗲𝗲 𝗢𝗻𝗹𝗶𝗻𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗨𝗽𝗴𝗿𝗮𝗱𝗲 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍

💼 Want to Upgrade Your Resume in 2025 — Without Spending a Dime?💫

Whether you’re in tech, marketing, business, or just looking to stand out — adding high-quality certifications to your resume can make a huge difference📄

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4iE6uzT

The best part? You don’t need to spend any money to do it💰📌
👍1
🔅 Convert PDF to docx (Word)
👍6
Python Roadmap for 2025 👆
👍4
𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

Whether you’re a student, fresher, or professional looking to upskill — Microsoft has dropped a series of completely free courses to get you started.

Learn SQL ,Power BI & More In 2025 

𝗟𝗶𝗻𝗸:-👇

https://pdlink.in/42FxnyM

Enroll For FREE & Get Certified 🎓
👍2
⌨️ encodeURI and decodeURI in JavaScript

It is important to learn about these functions to ensure URLs are properly formatted for use in HTTP requests. Also for safely transmitting URLs that contain special characters or spaces. and Working with APIs that require encoded URLs for queries. By using encodeURI() and decodeURI(), developers can ensure that their URIs are properly formatted and safely transmitted across different systems and platforms.
👍3
𝟲 𝗙𝗿𝗲𝗲 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗨𝗽𝘀𝗸𝗶𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟱😍

Whether you’re a student, aspiring data analyst, software enthusiast, or just curious about AI, now’s the perfect time to dive in.

These 6 beginner-friendly and completely free AI courses from top institutions like Google, IBM, Harvard, and more

𝗟𝗶𝗻𝗸:-👇

https://pdlink.in/4d0SrTG

Enroll for FREE & Get Certified 🎓
👍2
Creating a data science and machine learning project involves several steps, from defining the problem to deploying the model. Here is a general outline of how you can create a data science and ML project:

1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.

2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.

3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.

4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.

5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.

6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.

7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.

8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.

9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.

10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
👍7
𝗟𝗼𝗼𝗸𝗶𝗻𝗴 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁 𝘆𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗮𝗻𝗱 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗷𝗼𝘂𝗿𝗻𝗲𝘆 𝗶𝗻 𝟮𝟬𝟮𝟱?😍

📊 These free courses are designed for learners at all levels, whether you’re a beginner or an advanced professional📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/41Y1WQm

Don’t Wait! Start your Learning Journey Today✅️
👍2
Python Learning Plan in 2025

|-- Week 1: Introduction to Python
|   |-- Python Basics
|   |   |-- What is Python?
|   |   |-- Installing Python
|   |   |-- Introduction to IDEs (Jupyter, VS Code)
|   |-- Setting up Python Environment
|   |   |-- Anaconda Setup
|   |   |-- Virtual Environments
|   |   |-- Basic Syntax and Data Types
|   |-- First Python Program
|   |   |-- Writing and Running Python Scripts
|   |   |-- Basic Input/Output
|   |   |-- Simple Calculations
|
|-- Week 2: Core Python Concepts
|   |-- Control Structures
|   |   |-- Conditional Statements (if, elif, else)
|   |   |-- Loops (for, while)
|   |   |-- Comprehensions
|   |-- Functions
|   |   |-- Defining Functions
|   |   |-- Function Arguments and Return Values
|   |   |-- Lambda Functions
|   |-- Modules and Packages
|   |   |-- Importing Modules
|   |   |-- Standard Library Overview
|   |   |-- Creating and Using Packages
|
|-- Week 3: Advanced Python Concepts
|   |-- Data Structures
|   |   |-- Lists, Tuples, and Sets
|   |   |-- Dictionaries
|   |   |-- Collections Module
|   |-- File Handling
|   |   |-- Reading and Writing Files
|   |   |-- Working with CSV and JSON
|   |   |-- Context Managers
|   |-- Error Handling
|   |   |-- Exceptions
|   |   |-- Try, Except, Finally
|   |   |-- Custom Exceptions
|
|-- Week 4: Object-Oriented Programming
|   |-- OOP Basics
|   |   |-- Classes and Objects
|   |   |-- Attributes and Methods
|   |   |-- Inheritance
|   |-- Advanced OOP
|   |   |-- Polymorphism
|   |   |-- Encapsulation
|   |   |-- Magic Methods and Operator Overloading
|   |-- Design Patterns
|   |   |-- Singleton
|   |   |-- Factory
|   |   |-- Observer
|
|-- Week 5: Python for Data Analysis
|   |-- NumPy
|   |   |-- Arrays and Vectorization
|   |   |-- Indexing and Slicing
|   |   |-- Mathematical Operations
|   |-- Pandas
|   |   |-- DataFrames and Series
|   |   |-- Data Cleaning and Manipulation
|   |   |-- Merging and Joining Data
|   |-- Matplotlib and Seaborn
|   |   |-- Basic Plotting
|   |   |-- Advanced Visualizations
|   |   |-- Customizing Plots
|
|-- Week 6-8: Specialized Python Libraries
|   |-- Web Development
|   |   |-- Flask Basics
|   |   |-- Django Basics
|   |-- Data Science and Machine Learning
|   |   |-- Scikit-Learn
|   |   |-- TensorFlow and Keras
|   |-- Automation and Scripting
|   |   |-- Automating Tasks with Python
|   |   |-- Web Scraping with BeautifulSoup and Scrapy
|   |-- APIs and RESTful Services
|   |   |-- Working with REST APIs
|   |   |-- Building APIs with Flask/Django
|
|-- Week 9-11: Real-world Applications and Projects
|   |-- Capstone Project
|   |   |-- Project Planning
|   |   |-- Data Collection and Preparation
|   |   |-- Building and Optimizing Models
|   |   |-- Creating and Publishing Reports
|   |-- Case Studies
|   |   |-- Business Use Cases
|   |   |-- Industry-specific Solutions
|   |-- Integration with Other Tools
|   |   |-- Python and SQL
|   |   |-- Python and Excel
|   |   |-- Python and Power BI
|
|-- Week 12: Post-Project Learning
|   |-- Python for Automation
|   |   |-- Automating Daily Tasks
|   |   |-- Scripting with Python
|   |-- Advanced Python Topics
|   |   |-- Asyncio and Concurrency
|   |   |-- Advanced Data Structures
|   |-- Continuing Education
|   |   |-- Advanced Python Techniques
|   |   |-- Community and Forums
|   |   |-- Keeping Up with Updates
|
|-- Resources and Community
|   |-- Online Courses (Coursera, edX, Udemy)
|   |-- Books (Automate the Boring Stuff, Python Crash Course)
|   |-- Python Blogs and Podcasts
|   |-- GitHub Repositories
|   |-- Python Communities (Reddit, Stack Overflow)

Here you can find essential Python Interview Resources👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more resources like this 👍♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍4
𝗗𝗲𝗹𝗼𝗶𝘁𝘁𝗲 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗙𝗥𝗘𝗘 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 😍

If you’re eager to build real skills in data analytics before landing your first role, Deloitte is giving you a golden opportunity—completely free!

💡 No prior experience required
📚 Ideal for students, freshers, and aspiring data analysts
Self-paced — complete at your convenience

🔗 𝗔𝗽𝗽𝗹𝘆 𝗛𝗲𝗿𝗲 (𝗙𝗿𝗲𝗲)👇:- 

https://pdlink.in/4iKcgA4

Enroll for FREE & Get Certified 🎓
👍1
Projects to practice as a web developer with sources 👆
👍2