🚀 Модели IQuest-Coder-V1 для автономного программирования
IQuest-Coder-V1 — это семейство больших языковых моделей, предназначенных для улучшения автономного программирования и интеллектуального анализа кода. Модели используют инновационную многослойную парадигму обучения, обеспечивая выдающиеся результаты на ключевых бенчмарках.
🚀 Основные моменты:
- Достигает лучших результатов на SWE-Bench и других бенчмарках.
- Обучение на основе динамики изменений в репозиториях.
- Два специализированных направления: Thinking и Instruct модели.
- Поддержка контекста до 128K токенов.
- Эффективная архитектура с рекуррентным механизмом.
📌 GitHub: https://github.com/IQuestLab/IQuest-Coder-V1
#python
IQuest-Coder-V1 — это семейство больших языковых моделей, предназначенных для улучшения автономного программирования и интеллектуального анализа кода. Модели используют инновационную многослойную парадигму обучения, обеспечивая выдающиеся результаты на ключевых бенчмарках.
🚀 Основные моменты:
- Достигает лучших результатов на SWE-Bench и других бенчмарках.
- Обучение на основе динамики изменений в репозиториях.
- Два специализированных направления: Thinking и Instruct модели.
- Поддержка контекста до 128K токенов.
- Эффективная архитектура с рекуррентным механизмом.
📌 GitHub: https://github.com/IQuestLab/IQuest-Coder-V1
#python
👍6❤5🔥2
🚀 Умный плагин для Claude Code
Claude Workflow — это универсальный плагин, который включает специализированные агенты и навыки для автоматизации разработки программного обеспечения. Он помогает в координации задач, анализе кода, написании документации и обеспечении безопасности.
🚀 Основные моменты:
- 7 специализированных агентов для различных задач
- 6 знаний для улучшения проектирования и тестирования
- Поддержка нескольких стилей вывода через слэш-команды
- Автоматизация с помощью хуков для повышения безопасности и качества кода
📌 GitHub: https://github.com/CloudAI-X/claude-workflow
Claude Workflow — это универсальный плагин, который включает специализированные агенты и навыки для автоматизации разработки программного обеспечения. Он помогает в координации задач, анализе кода, написании документации и обеспечении безопасности.
🚀 Основные моменты:
- 7 специализированных агентов для различных задач
- 6 знаний для улучшения проектирования и тестирования
- Поддержка нескольких стилей вывода через слэш-команды
- Автоматизация с помощью хуков для повышения безопасности и качества кода
📌 GitHub: https://github.com/CloudAI-X/claude-workflow
❤9👍3🔥3😁2
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 talk-to-girlfriend-ai - AI-агент для помощи в переписке через Telegram
Это проект Telegram-бота/агента, который помогает придумывать умные и уместные ответы
в переписке — анализирует контекст и предлагает варианты ответа.
Что умеет AI:
- пишет ответы на основе диалога
- генерирует фразы для старта разговора
- помогает формулировать сообщения более интересно
- даёт советы, как поддерживать беседу
- умеет читать и отправлять сообщения через Telegram API
⚡️ Как работает:
- CLI-агент на TypeScript
- мост на Python для работы с Telegram
- AI-ядро (модель)
- semantic search для поиска подходящих фраз
📌 Репозиторий: https://github.com/arlanrakh/talk-to-girlfriend-ai
Это проект Telegram-бота/агента, который помогает придумывать умные и уместные ответы
в переписке — анализирует контекст и предлагает варианты ответа.
Что умеет AI:
- пишет ответы на основе диалога
- генерирует фразы для старта разговора
- помогает формулировать сообщения более интересно
- даёт советы, как поддерживать беседу
- умеет читать и отправлять сообщения через Telegram API
⚡️ Как работает:
- CLI-агент на TypeScript
- мост на Python для работы с Telegram
- AI-ядро (модель)
- semantic search для поиска подходящих фраз
📌 Репозиторий: https://github.com/arlanrakh/talk-to-girlfriend-ai
😁37🔥5❤4👍3😢1
📹 Загрузчик видео с YouTube и других платформ
tuitube — это текстовый интерфейс для загрузки видео с YouTube, 𝕏, Twitch, Instagram и Bilibili с использованием yt-dlp. Удобный инструмент для тех, кто предпочитает командную строку.
🚀 Основные моменты:
- Поддержка множества видео платформ
- Использует yt-dlp для загрузки
- Простой текстовый интерфейс
- Легко настраивается и использует командную строку
📌 GitHub: https://github.com/remorses/tuitube
#python
tuitube — это текстовый интерфейс для загрузки видео с YouTube, 𝕏, Twitch, Instagram и Bilibili с использованием yt-dlp. Удобный инструмент для тех, кто предпочитает командную строку.
🚀 Основные моменты:
- Поддержка множества видео платформ
- Использует yt-dlp для загрузки
- Простой текстовый интерфейс
- Легко настраивается и использует командную строку
📌 GitHub: https://github.com/remorses/tuitube
#python
👍24❤5🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
Нужно быстро поднять сервер под Python-проект без лишней возни?
Ставим системные пакеты, создаём отдельного пользователя, настраиваем venv, делаем systemd-сервис и сразу получаем автозапуск + рестарт при падении.
Идеально для FastAPI / Flask / любых API и ботов.
sudo apt update && sudo apt install -y python3-venv python3-pip nginx
sudo useradd -m -s /bin/bash app && sudo mkdir -p /opt/app && sudo chown -R app:app /opt/app
sudo -u app bash -lc 'cd /opt/app && python3 -m venv venv && ./venv/bin/pip install -U pip uvicorn fastapi'
sudo tee /etc/systemd/system/app.service >/dev/null <<'EOF'
[Unit]
After=network.target
[Service]
User=app
WorkingDirectory=/opt/app
ExecStart=/opt/app/venv/bin/uvicorn main:app --host 0.0.0.0 --port 8000
Restart=always
[Install]
WantedBy=multi-user.target
EOF
sudo systemctl daemon-reload
sudo systemctl enable --now app
sudo systemctl status app --no-pager
https://www.youtube.com/shorts/cbUNWU1Sbsc
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤13🤩6
This media is not supported in your browser
VIEW IN TELEGRAM
🎁 Дед Мороз Денис Носков тут подарки вам на +300к принёс! Заберёте?
Без лишних прелюдий, рассказываем:
💥 5000+ рабочих AI-шаблонов
💥 170+ AI-ассистентов
💥 3 годовые подписки на ВСЕ нейронки (стоимостью более 200 000₽)
💥 17+ локальных нейросетей
💥 готовые open-source решения под заработок
Всё это может стать вашим, ведь уже 17 января (суббота) в 12:00 по мск Денис Носков на своём бесплатном эфире будет раздавать эти подарки всем участникам!
Хотите тоже их получить?
Жмите на ссылку и регистрируйтесь:
👉🏼 https://neuroncourses.com/web2?utm_source=ch7
Помимо этого Денис расскажет, как вы можете собрать своё AI-агентство и продавать AI-решения по $1500+ за проект уже сейчас!
Без кода.
Без команды.
Без «разберитесь сами».
Это не лекция.
Это раздача активов и рабочей модели.
🎯 Эфир бесплатный.
🎁 Подарки ВСЕМ, кто будет до конца.
👉 https://news.1rj.ru/str/Neuron_PromtMaster_bot?start=ch7
Количество бесплатных мест ограничено.
Без лишних прелюдий, рассказываем:
Всё это может стать вашим, ведь уже 17 января (суббота) в 12:00 по мск Денис Носков на своём бесплатном эфире будет раздавать эти подарки всем участникам!
Хотите тоже их получить?
Жмите на ссылку и регистрируйтесь:
👉🏼 https://neuroncourses.com/web2?utm_source=ch7
Помимо этого Денис расскажет, как вы можете собрать своё AI-агентство и продавать AI-решения по $1500+ за проект уже сейчас!
Без кода.
Без команды.
Без «разберитесь сами».
Это не лекция.
Это раздача активов и рабочей модели.
🎯 Эфир бесплатный.
🎁 Подарки ВСЕМ, кто будет до конца.
👉 https://news.1rj.ru/str/Neuron_PromtMaster_bot?start=ch7
Количество бесплатных мест ограничено.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍3🔥3😁3
This media is not supported in your browser
VIEW IN TELEGRAM
Сохраняй себе это - и используй каждый раз, когда начинаешь новый Python-проект.
Перед тем как писать код, сделай 5 вещей:
- создай правильную структуру проекта
- подними виртуальное окружение
- закрепи зависимости (requirements/poetry)
- добавь линтер и форматтер, чтобы код сразу был норм
- вынеси секреты в .env, а не в код
Это экономит часы на дебаге и делает проект “взрослым” с первой минуты.
1) создать папку проекта
mkdir my_project && cd my_project
2) виртуальное окружение
python -m venv .venv
source .venv/bin/activate
3) базовые файлы
touch main.py requirements.txt .env .gitignore
4) gitignore + env
echo ".venv/
__pycache__/
.env
*.pyc" > .gitignore
# 5) полезный стартовый набор
pip install -U pip
pip install ruff black python-dotenv
https://www.youtube.com/shorts/lnKQ_2UjOfw
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13👍5🔥2😁2
📢 ИИ из каждого утюга, а как им пользоваться-то?
Владение нейросетями — один из ключевых навыков для разработчика в 2026 году. И пока год только начинается, есть время накопить «опыт в ML» и подтвердить его в собственном резюме.
Научитесь применять ИИ на практике с бесплатным курсом Академии Selectel. На нем вы:
👉 развернете нейросети в облаке за 5 минут,
👉 создадите Telegram-бота для обработки полученных сообщений,
👉 познакомитесь с библиотекой от Hugging Face и задеплоите шаблон для генерации изображений на сервер с GPU.
А бонусом разберете актуальные нейросети в 2026 году и получите лайфхаки по генерации изображений.
Внутри курса — шесть блоков с инструкциями от экспертов Selectel, обзоры на Midjourney, DALL-E, Stable Diffusion и другие нейросети для разработчиков. Прокачивайте практические навыки абсолютно бесплатно ➡️
Владение нейросетями — один из ключевых навыков для разработчика в 2026 году. И пока год только начинается, есть время накопить «опыт в ML» и подтвердить его в собственном резюме.
Научитесь применять ИИ на практике с бесплатным курсом Академии Selectel. На нем вы:
👉 развернете нейросети в облаке за 5 минут,
👉 создадите Telegram-бота для обработки полученных сообщений,
👉 познакомитесь с библиотекой от Hugging Face и задеплоите шаблон для генерации изображений на сервер с GPU.
А бонусом разберете актуальные нейросети в 2026 году и получите лайфхаки по генерации изображений.
Внутри курса — шесть блоков с инструкциями от экспертов Selectel, обзоры на Midjourney, DALL-E, Stable Diffusion и другие нейросети для разработчиков. Прокачивайте практические навыки абсолютно бесплатно ➡️
❤8👍2🔥2
⚡️ Все шпаргалки для программистов в одном месте.
Внутри много полезного: короткие, понятные подсказки по языкам, технологиям и фреймворкам.
Без регистрации и бесплатно.
https://overapi.com/
@pythonl
Внутри много полезного: короткие, понятные подсказки по языкам, технологиям и фреймворкам.
Без регистрации и бесплатно.
https://overapi.com/
@pythonl
❤8👍5🔥4
💼 ru-test-assignments - большая база реальных тестовых заданий от IT-компаний
ru-test-assignments - это открытая коллекция настоящих тестовых заданий, которые кандидаты получали на собеседованиях в российских IT-компаниях.
Без абстрактных задач «в вакууме» только то, что реально спрашивают.
Что внутри 👇
• Сотни заданий по направлениям:
Frontend, Backend, QA, Android, iOS, Data Science, DevOps
• Компании из топа рынка:
Avito, Яндекс, Тинькофф, Сбер, Ozon, VK и другие
• Разные языки и стеки:
Python, JavaScript, Go, Java, PHP, Ruby, C#
• Готовые задания можно прикреплять в портфолио (например, через Hexlet CV)
Почему это полезно:
- понимаешь реальные требования рынка
- тренируешься на задачах уровня интервью
- закрываешь пробелы в стеке
- усиливаешь портфолио без выдуманных кейсов
Отличный ресурс для подготовки к собеседованиям и оценки своего уровня.
https://github.com/Hexlet/ru-test-assignments
ru-test-assignments - это открытая коллекция настоящих тестовых заданий, которые кандидаты получали на собеседованиях в российских IT-компаниях.
Без абстрактных задач «в вакууме» только то, что реально спрашивают.
Что внутри 👇
• Сотни заданий по направлениям:
Frontend, Backend, QA, Android, iOS, Data Science, DevOps
• Компании из топа рынка:
Avito, Яндекс, Тинькофф, Сбер, Ozon, VK и другие
• Разные языки и стеки:
Python, JavaScript, Go, Java, PHP, Ruby, C#
• Готовые задания можно прикреплять в портфолио (например, через Hexlet CV)
Почему это полезно:
- понимаешь реальные требования рынка
- тренируешься на задачах уровня интервью
- закрываешь пробелы в стеке
- усиливаешь портфолио без выдуманных кейсов
Отличный ресурс для подготовки к собеседованиям и оценки своего уровня.
https://github.com/Hexlet/ru-test-assignments
❤10👍8🔥6
🧭 LLMRouter - умная маршрутизация запросов между LLM
UIUC (ULab) выложили LLMRouter - проект про то, что скоро станет стандартом в AI-продуктах:
не выбирать “одну лучшую модель”,
а маршрутизировать запросы между несколькими LLM так, чтобы было:
- дешевле
- быстрее
- точнее
Идея простая:
разные модели сильны в разном.
Одна лучше пишет код, другая - рассуждает, третья - дешёвая для рутины.
Но большинство продуктов до сих пор делают тупо:
“все запросы → одна LLM”.
LLMRouter делает наоборот:
- анализирует входной запрос
- оценивает сложность / тип задачи
- выбирает подходящую модель
- может учитывать цену, latency, качество, политики
В итоге:
✅ обычные вопросы идут в дешёвую модель
✅ сложные reasoning-задачи - в сильную
✅ код/инструменты - в специализированную
✅ и всё это автоматически
Почему это важно:
как только у тебя 3-5 моделей (OpenAI/Anthropic/Gemini/open-source),
маршрутизация превращается в экономию десятков тысяч долларов в месяц.
Короче: это “load balancer” для LLM, но с мозгами.
GitHub: https://github.com/ulab-uiuc/LLMRouter
#LLM #AI #Routing #Agents #MLOps
@pythonl
UIUC (ULab) выложили LLMRouter - проект про то, что скоро станет стандартом в AI-продуктах:
не выбирать “одну лучшую модель”,
а маршрутизировать запросы между несколькими LLM так, чтобы было:
- дешевле
- быстрее
- точнее
Идея простая:
разные модели сильны в разном.
Одна лучше пишет код, другая - рассуждает, третья - дешёвая для рутины.
Но большинство продуктов до сих пор делают тупо:
“все запросы → одна LLM”.
LLMRouter делает наоборот:
- анализирует входной запрос
- оценивает сложность / тип задачи
- выбирает подходящую модель
- может учитывать цену, latency, качество, политики
В итоге:
✅ обычные вопросы идут в дешёвую модель
✅ сложные reasoning-задачи - в сильную
✅ код/инструменты - в специализированную
✅ и всё это автоматически
Почему это важно:
как только у тебя 3-5 моделей (OpenAI/Anthropic/Gemini/open-source),
маршрутизация превращается в экономию десятков тысяч долларов в месяц.
Короче: это “load balancer” для LLM, но с мозгами.
GitHub: https://github.com/ulab-uiuc/LLMRouter
#LLM #AI #Routing #Agents #MLOps
@pythonl
👍18❤8🔥7
🐸 Microsoft зарелизили FrogMini - модель для дебага и исправления багов.
Что важно:
- Базируется на Qwen3-14B
- Показала SOTA на SWE-Bench Verified: Pass@1 = 45.0% 🔥
Как обучали:
- Использовали SFT (supervised fine-tuning)
- Данные - успешные debugging trajectories (пошаговые цепочки исправлений)
- Эти траектории сгенерированы сильной teacher-моделью (например, **Claude**)
- Источники багов - микс реальных и синтетических датасетов
Идея простая, но мощная:
учим модель не просто писать код, а думать как дебаггер - шаг за шагом.
📌 Теперь Qwen3-14B + правильные траектории = реальный tool для SWE задач.
https://huggingface.co/microsoft/FrogMini-14B-2510
@pythonl
Что важно:
- Базируется на Qwen3-14B
- Показала SOTA на SWE-Bench Verified: Pass@1 = 45.0% 🔥
Как обучали:
- Использовали SFT (supervised fine-tuning)
- Данные - успешные debugging trajectories (пошаговые цепочки исправлений)
- Эти траектории сгенерированы сильной teacher-моделью (например, **Claude**)
- Источники багов - микс реальных и синтетических датасетов
Идея простая, но мощная:
учим модель не просто писать код, а думать как дебаггер - шаг за шагом.
📌 Теперь Qwen3-14B + правильные траектории = реальный tool для SWE задач.
https://huggingface.co/microsoft/FrogMini-14B-2510
@pythonl
🔥15❤7👍4😁1
🌍 Google выпустили TranslateGemma - открытые модели перевода на базе Gemma 3
Google представили TranslateGemma - набор open-source переводчиков, построенных на Gemma 3.
Что важно:
- это не “чат-LLM, который может переводить”, а отдельная линейка моделей именно под перевод
- доступны размеры 4B / 12B / 27B
- поддержка 55 языков
- фокус на практичности: можно запускать на разном железе и встраивать в приложения
Идея простая:
сделать качественный машинный перевод доступным и открытым, чтобы разработчики могли использовать модели локально, в продуктах и сервисах без привязки к закрытым API.
Ещё один шаг к тому, что перевод становится “базовой функцией” прямо внутри открытых моделей.
Анонс: https://blog.google/innovation-and-ai/technology/developers-tools/translategemma/
HF: https://huggingface.co/collections/google/translategemma
@pythonl
Google представили TranslateGemma - набор open-source переводчиков, построенных на Gemma 3.
Что важно:
- это не “чат-LLM, который может переводить”, а отдельная линейка моделей именно под перевод
- доступны размеры 4B / 12B / 27B
- поддержка 55 языков
- фокус на практичности: можно запускать на разном железе и встраивать в приложения
Идея простая:
сделать качественный машинный перевод доступным и открытым, чтобы разработчики могли использовать модели локально, в продуктах и сервисах без привязки к закрытым API.
Ещё один шаг к тому, что перевод становится “базовой функцией” прямо внутри открытых моделей.
Анонс: https://blog.google/innovation-and-ai/technology/developers-tools/translategemma/
HF: https://huggingface.co/collections/google/translategemma
@pythonl
❤22🔥9👍4
🧠 Awesome Agentic Patterns - шпаргалка по агентам, которая реально полезна
Наткнулся на репозиторий awesome-agentic-patterns - и это один из самых практичных “awesome-листов” по теме AI-агентов.
📌 Что внутри:
не теоретические рассуждения, а паттерны - мини-архитектуры и рабочие приёмы, которые используют команды, когда делают production-агентов.
Автор прямо пишет идею проекта:
> тут не про “игрушки и демки”, а про штуки, которые закрывают грязную реальность продакшена.
Почти любой агент в проде упирается в одни и те же проблемы:
- контекст не помещается → нужно умно управлять памятью
- модель косячит → нужны retry/валидация/guardrails
- цепочки действий ломаются → нужна оркестрация
- непонятно, что пошло не так → нужны логи + eval
- безопасность / PII → нужен sandbox и фильтрация
И вот под это как раз собраны паттерны.
https://github.com/nibzard/awesome-agentic-patterns
@pythonl
Наткнулся на репозиторий awesome-agentic-patterns - и это один из самых практичных “awesome-листов” по теме AI-агентов.
📌 Что внутри:
не теоретические рассуждения, а паттерны - мини-архитектуры и рабочие приёмы, которые используют команды, когда делают production-агентов.
Автор прямо пишет идею проекта:
> тут не про “игрушки и демки”, а про штуки, которые закрывают грязную реальность продакшена.
Почти любой агент в проде упирается в одни и те же проблемы:
- контекст не помещается → нужно умно управлять памятью
- модель косячит → нужны retry/валидация/guardrails
- цепочки действий ломаются → нужна оркестрация
- непонятно, что пошло не так → нужны логи + eval
- безопасность / PII → нужен sandbox и фильтрация
И вот под это как раз собраны паттерны.
https://github.com/nibzard/awesome-agentic-patterns
@pythonl
👍8🔥7❤3
This media is not supported in your browser
VIEW IN TELEGRAM
Иногда нужно просто:
- запустить функцию каждые 5 минут
- или каждый день в 09:00
- или по cron
…и всё.
Но Celery для этого — реально оверкилл: брокер, воркеры, Redis/RabbitMQ, отдельная инфраструктура.
FastScheduler решает ровно эту задачу:
✅ *in-process* планировщик задач (никаких Redis / брокеров)
✅ decorator-first API — красиво и быстро
✅ async поддержка из коробки
✅ персистентность (состояние сохраняется, переживает рестарты)
✅ опционально — FastAPI dashboard для просмотра задач
Пример того, как выглядит API:
@scheduler.every(5).minutes
def sync_users():
...
@scheduler.daily.at("09:00")
async def morning_report():
Философия простая:
если тебе не нужна распределённость - не бери Celery, попробуй FastScheduler.
Установка:
pip install fastscheduler[all]
📌 GitHub: https://github.com/MichielMe/fastscheduler
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥12❤7👍7😢1
Forwarded from Machinelearning
PythonRobotics - открытая коллекция кода на Python и учебник по алгоритмам робототехники, которую собрал Ацуши Сакаи.
К каждой теме есть визуальные анимации, математические объяснения и рабочий код.
Библиотека не перегружена, ее легко читать и понимать, она содержит практические алгоритмы. которые реально используются в индустрии.
Это отличный образовательный ресурс с 2 212 коммитами, вкладом 138 разработчиков и активной поддержкой.
Если вы изучаете робототехнику, создаете автономные системы или преподаете алгоритмы — этот ресурс для вас.
У проекта лицензия MIT, так что можно свободно использовать его в личных или коммерческих проектах.
А еще, это отличный пример, как выглядит хороший опен-сорс: образовательный, практичный, хорошо документированный и развиваемый сообществом.
@ai_machinelearning_big_data
#AI #ML #Robotics #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤6
🎨 Генерация изображений с GLM-Image
GLM-Image - это мощная модель генерации изображений, использующая гибридную архитектуру с автогрессивным и диффузионным декодерами. Она превосходно справляется с задачами текстового рендеринга и генерацией изображений с высоким уровнем детализации, поддерживая как текст-в-изображение, так и изображение-в-изображение.
🚀 Основные моменты:
- Гибридная архитектура для высококачественной генерации изображений.
- Поддержка текст-в-изображение и множество задач изображение-в-изображение.
- Модуль обратной связи для улучшения семантического понимания и детализации.
- Высокая точность рендеринга текста в изображениях.
- Доступность через Hugging Face и ModelScope.
📌 GitHub: https://github.com/zai-org/GLM-Image
@pythonl
GLM-Image - это мощная модель генерации изображений, использующая гибридную архитектуру с автогрессивным и диффузионным декодерами. Она превосходно справляется с задачами текстового рендеринга и генерацией изображений с высоким уровнем детализации, поддерживая как текст-в-изображение, так и изображение-в-изображение.
🚀 Основные моменты:
- Гибридная архитектура для высококачественной генерации изображений.
- Поддержка текст-в-изображение и множество задач изображение-в-изображение.
- Модуль обратной связи для улучшения семантического понимания и детализации.
- Высокая точность рендеринга текста в изображениях.
- Доступность через Hugging Face и ModelScope.
📌 GitHub: https://github.com/zai-org/GLM-Image
@pythonl
❤9👍5🔥4
Обновлять зависимости важно - так ты получаешь новые фичи и фиксы багов.
Но у свежих релизов есть минус:
часто в первые дни всплывают ошибки, несовместимости и неожиданные регрессы, пока комьюнити не успеет всё отловить.
✅ В uv для этого есть опция exclude-newer
Она позволяет задать “период охлаждения” - и пропускать пакеты, которые были выпущены слишком недавно.
Как использовать:
добавь в
pyproject.toml:exclude-newer = "7 days"И при желании поменяй срок под себя (например, 3 дня, 14 дней и т.д.).
Идея простая:
обновляйся регулярно, но не на самых горячих релизах.
https://www.youtube.com/shorts/98q0IkNrBbU
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20❤5🔥3