Data Science Projects – Telegram
Data Science Projects
53.1K subscribers
382 photos
1 video
57 files
332 links
Perfect channel for Data Scientists

Learn Python, AI, R, Machine Learning, Data Science and many more

Admin: @love_data
Download Telegram
Python Detailed Roadmap 🚀

📌 1. Basics
Data Types & Variables
Operators & Expressions
Control Flow (if, loops)

📌 2. Functions & Modules
Defining Functions
Lambda Functions
Importing & Creating Modules

📌 3. File Handling
Reading & Writing Files
Working with CSV & JSON

📌 4. Object-Oriented Programming (OOP)
Classes & Objects
Inheritance & Polymorphism
Encapsulation

📌 5. Exception Handling
Try-Except Blocks
Custom Exceptions

📌 6. Advanced Python Concepts
List & Dictionary Comprehensions
Generators & Iterators
Decorators

📌 7. Essential Libraries
NumPy (Arrays & Computations)
Pandas (Data Analysis)
Matplotlib & Seaborn (Visualization)

📌 8. Web Development & APIs
Web Scraping (BeautifulSoup, Scrapy)
API Integration (Requests)
Flask & Django (Backend Development)

📌 9. Automation & Scripting
Automating Tasks with Python
Working with Selenium & PyAutoGUI

📌 10. Data Science & Machine Learning
Data Cleaning & Preprocessing
Scikit-Learn (ML Algorithms)
TensorFlow & PyTorch (Deep Learning)

📌 11. Projects
Build Real-World Applications
Showcase on GitHub

📌 12. Apply for Jobs
Strengthen Resume & Portfolio
Prepare for Technical Interviews

Like for more ❤️💪
3
Since many of you were asking me to send Data Science Session

📌So we have come with a session for you!! 👨🏻‍💻 👩🏻‍💻

This will help you to speed up your job hunting process 💪

Register here
👇👇
https://go.acciojob.com/RYFvdU

Only limited free slots are available so Register Now
4
Python Cheat Sheet.pdf
677.7 KB
This cheat sheet includes basic python required for data analysis excluding pandas, numpy & other libraries
2👍2
🚀 Excel vs SQL vs Python (Pandas):

1️⃣ Filtering Data
↳ Excel: =FILTER(A2:D100, B2:B100>50) (Excel 365 users)
↳ SQL: SELECT * FROM table WHERE column > 50;
↳ Python: df_filtered = df[df['column'] > 50]

2️⃣ Sorting Data
↳ Excel: Data → Sort (or =SORT(A2:A100, 1, TRUE))
↳ SQL: SELECT * FROM table ORDER BY column ASC;
↳ Python: df_sorted = df.sort_values(by="column")

3️⃣ Counting Rows
↳ Excel: =COUNTA(A:A)
↳ SQL: SELECT COUNT(*) FROM table;
↳ Python: row_count = len(df)

4️⃣ Removing Duplicates
↳ Excel: Data → Remove Duplicates
↳ SQL: SELECT DISTINCT * FROM table;
↳ Python: df_unique = df.drop_duplicates()

5️⃣ Joining Tables
↳ Excel: Power Query → Merge Queries (or VLOOKUP/XLOOKUP)
↳ SQL: SELECT * FROM table1 JOIN table2 ON table1.id = table2.id;
↳ Python: df_merged = pd.merge(df1, df2, on="id")

6️⃣ Ranking Data
↳ Excel: =RANK.EQ(A2, $A$2:$A$100)
↳ SQL: SELECT column, RANK() OVER (ORDER BY column DESC) AS rank FROM table;
↳ Python: df["rank"] = df["column"].rank(method="min", ascending=False)

7️⃣ Moving Average Calculation
↳ Excel: =AVERAGE(B2:B4) (manually for rolling window)
↳ SQL: SELECT date, AVG(value) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM table;
↳ Python: df["moving_avg"] = df["value"].rolling(window=3).mean()

8️⃣ Running Total
↳ Excel: =SUM($B$2:B2) (drag down)
↳ SQL: SELECT date, SUM(value) OVER (ORDER BY date) AS running_total FROM table;
↳ Python: df["running_total"] = df["value"].cumsum()
5👏1
Essential Data Science Concepts Everyone Should Know:

1. Data Types and Structures:

Categorical: Nominal (unordered, e.g., colors) and Ordinal (ordered, e.g., education levels)

Numerical: Discrete (countable, e.g., number of children) and Continuous (measurable, e.g., height)

Data Structures: Arrays, Lists, Dictionaries, DataFrames (for organizing and manipulating data)

2. Denoscriptive Statistics:

Measures of Central Tendency: Mean, Median, Mode (describing the typical value)

Measures of Dispersion: Variance, Standard Deviation, Range (describing the spread of data)

Visualizations: Histograms, Boxplots, Scatterplots (for understanding data distribution)

3. Probability and Statistics:

Probability Distributions: Normal, Binomial, Poisson (modeling data patterns)

Hypothesis Testing: Formulating and testing claims about data (e.g., A/B testing)

Confidence Intervals: Estimating the range of plausible values for a population parameter

4. Machine Learning:

Supervised Learning: Regression (predicting continuous values) and Classification (predicting categories)

Unsupervised Learning: Clustering (grouping similar data points) and Dimensionality Reduction (simplifying data)

Model Evaluation: Accuracy, Precision, Recall, F1-score (assessing model performance)

5. Data Cleaning and Preprocessing:

Missing Value Handling: Imputation, Deletion (dealing with incomplete data)

Outlier Detection and Removal: Identifying and addressing extreme values

Feature Engineering: Creating new features from existing ones (e.g., combining variables)

6. Data Visualization:

Types of Charts: Bar charts, Line charts, Pie charts, Heatmaps (for communicating insights visually)

Principles of Effective Visualization: Clarity, Accuracy, Aesthetics (for conveying information effectively)

7. Ethical Considerations in Data Science:

Data Privacy and Security: Protecting sensitive information

Bias and Fairness: Ensuring algorithms are unbiased and fair

8. Programming Languages and Tools:

Python: Popular for data science with libraries like NumPy, Pandas, Scikit-learn

R: Statistical programming language with strong visualization capabilities

SQL: For querying and manipulating data in databases

9. Big Data and Cloud Computing:

Hadoop and Spark: Frameworks for processing massive datasets

Cloud Platforms: AWS, Azure, Google Cloud (for storing and analyzing data)

10. Domain Expertise:

Understanding the Data: Knowing the context and meaning of data is crucial for effective analysis

Problem Framing: Defining the right questions and objectives for data-driven decision making

Bonus:

Data Storytelling: Communicating insights and findings in a clear and engaging manner

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍
5
🤖 How Artificial Intelligence Works...
3
When you’re in an interview, it’s super important to know how to talk about your projects in a way that impresses the interviewer. Here are some key points to help you do just that:

➤ 𝗣𝗿𝗼𝗷𝗲𝗰𝘁 𝗢𝘃𝗲𝗿𝘃𝗶𝗲𝘄:
- Start with a quick summary of the project you worked on. What was it all about? What were the main goals? Keep it short and sweet something you can explain in about 30 seconds.

➤ 𝗣𝗿𝗼𝗯𝗹𝗲𝗺 𝗦𝘁𝗮𝘁𝗲𝗺𝗲𝗻𝘁:
- What problem were you trying to solve with this project? Explain why this problem was important and needed addressing.

➤ 𝗣𝗿𝗼𝗽𝗼𝘀𝗲𝗱 𝗦𝗼𝗹𝘂𝘁𝗶𝗼𝗻:
- Describe the solution you came up with. How does it work, and why is it a good fix for the problem?

➤ 𝗬𝗼𝘂𝗿 𝗥𝗼𝗹𝗲:
- Talk about what you specifically did. What were your main tasks? Did you face any challenges, and how did you overcome them? Make sure it’s clear whether you were leading the project, a key player, or supporting the team.

➤ 𝗧𝗲𝗰𝗵𝗻𝗼𝗹𝗼𝗴𝗶𝗲𝘀 𝗮𝗻𝗱 𝗧𝗼𝗼𝗹𝘀:
- Mention the tech and tools you used. This shows your technical know-how and your ability to choose the right tools for the job.

➤ 𝗜𝗺𝗽𝗮𝗰𝘁 𝗮𝗻𝗱 𝗔𝗰𝗵𝗶𝗲𝘃𝗲𝗺𝗲𝗻𝘁𝘀:
- Share the results of your project. Did it make things better? How? Mention any improvements, efficiencies, or positive feedback you got.

➤ 𝗧𝗲𝗮𝗺 𝗖𝗼𝗹𝗹𝗮𝗯𝗼𝗿𝗮𝘁𝗶𝗼𝗻:
- Talk about how you collaborated. What was your role in the team? How did you communicate and contribute to the team’s success?

➤ 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗮𝗻𝗱 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁:
- Reflect on what you learned from the project. What new skills did you gain, and what would you do differently next time?

➤ 𝗧𝗶𝗽𝘀 𝗳𝗼𝗿 𝗬𝗼𝘂𝗿 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗣𝗿𝗲𝗽𝗮𝗿𝗮𝘁𝗶𝗼𝗻:
- Be ready with a 30 second elevator pitch about your projects, and also have a five-minute detailed overview ready.
- If there’s a pause after you describe the project, don’t hesitate to ask if they’d like more details or if there’s a specific part they’re interested in.

By preparing your project details thoroughly and understanding what the interviewer is looking for, you can talk about your experience in a way that really showcases your skills and increases your chances of getting the job.

Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
1
Data Science Cheatsheet 💪
5
VS Code Shortcuts
4
🚀 Excel vs SQL vs Python (Pandas):

1️⃣ Filtering Data
↳ Excel: =FILTER(A2:D100, B2:B100>50) (Excel 365 users)
↳ SQL: SELECT * FROM table WHERE column > 50;
↳ Python: df_filtered = df[df['column'] > 50]

2️⃣ Sorting Data
↳ Excel: Data → Sort (or =SORT(A2:A100, 1, TRUE))
↳ SQL: SELECT * FROM table ORDER BY column ASC;
↳ Python: df_sorted = df.sort_values(by="column")

3️⃣ Counting Rows
↳ Excel: =COUNTA(A:A)
↳ SQL: SELECT COUNT(*) FROM table;
↳ Python: row_count = len(df)

4️⃣ Removing Duplicates
↳ Excel: Data → Remove Duplicates
↳ SQL: SELECT DISTINCT * FROM table;
↳ Python: df_unique = df.drop_duplicates()

5️⃣ Joining Tables
↳ Excel: Power Query → Merge Queries (or VLOOKUP/XLOOKUP)
↳ SQL: SELECT * FROM table1 JOIN table2 ON table1.id = table2.id;
↳ Python: df_merged = pd.merge(df1, df2, on="id")

6️⃣ Ranking Data
↳ Excel: =RANK.EQ(A2, $A$2:$A$100)
↳ SQL: SELECT column, RANK() OVER (ORDER BY column DESC) AS rank FROM table;
↳ Python: df["rank"] = df["column"].rank(method="min", ascending=False)

7️⃣ Moving Average Calculation
↳ Excel: =AVERAGE(B2:B4) (manually for rolling window)
↳ SQL: SELECT date, AVG(value) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM table;
↳ Python: df["moving_avg"] = df["value"].rolling(window=3).mean()

8️⃣ Running Total
↳ Excel: =SUM($B$2:B2) (drag down)
↳ SQL: SELECT date, SUM(value) OVER (ORDER BY date) AS running_total FROM table;
↳ Python: df["running_total"] = df["value"].cumsum()
7