Python Roadmap for 2025: Complete Guide
1. Python Fundamentals
1.1 Variables, constants, and comments.
1.2 Data types: int, float, str, bool, complex.
1.3 Input and output (input(), print(), formatted strings).
1.4 Python syntax: Indentation and code structure.
2. Operators
2.1 Arithmetic: +, -, *, /, %, //, **.
2.2 Comparison: ==, !=, <, >, <=, >=.
2.3 Logical: and, or, not.
2.4 Bitwise: &, |, ^, ~, <<, >>.
2.5 Identity: is, is not.
2.6 Membership: in, not in.
3. Control Flow
3.1 Conditional statements: if, elif, else.
3.2 Loops: for, while.
3.3 Loop control: break, continue, pass.
4. Data Structures
4.1 Lists: Indexing, slicing, methods (append(), pop(), sort(), etc.).
4.2 Tuples: Immutability, packing/unpacking.
4.3 Dictionaries: Key-value pairs, methods (get(), items(), etc.).
4.4 Sets: Unique elements, set operations (union, intersection).
4.5 Strings: Immutability, methods (split(), strip(), replace()).
5. Functions
5.1 Defining functions with def.
5.2 Arguments: Positional, keyword, default, *args, **kwargs.
5.3 Anonymous functions (lambda).
5.4 Recursion.
6. Modules and Packages
6.1 Importing: import, from ... import.
6.2 Standard libraries: math, os, sys, random, datetime, time.
6.3 Installing external libraries with pip.
7. File Handling
7.1 Open and close files (open(), close()).
7.2 Read and write (read(), write(), readlines()).
7.3 Using context managers (with open(...)).
8. Object-Oriented Programming (OOP)
8.1 Classes and objects.
8.2 Methods and attributes.
8.3 Constructor (init).
8.4 Inheritance, polymorphism, encapsulation.
8.5 Special methods (str, repr, etc.).
9. Error and Exception Handling
9.1 try, except, else, finally.
9.2 Raising exceptions (raise).
9.3 Custom exceptions.
10. Comprehensions
10.1 List comprehensions.
10.2 Dictionary comprehensions.
10.3 Set comprehensions.
11. Iterators and Generators
11.1 Creating iterators using iter() and next().
11.2 Generators with yield.
11.3 Generator expressions.
12. Decorators and Closures
12.1 Functions as first-class citizens.
12.2 Nested functions.
12.3 Closures.
12.4 Creating and applying decorators.
13. Advanced Topics
13.1 Context managers (with statement).
13.2 Multithreading and multiprocessing.
13.3 Asynchronous programming with async and await.
13.4 Python's Global Interpreter Lock (GIL).
14. Python Internals
14.1 Mutable vs immutable objects.
14.2 Memory management and garbage collection.
14.3 Python's name == "main" mechanism.
15. Libraries and Frameworks
15.1 Data Science: NumPy, Pandas, Matplotlib, Seaborn.
15.2 Web Development: Flask, Django, FastAPI.
15.3 Testing: unittest, pytest.
15.4 APIs: requests, http.client.
15.5 Automation: selenium, os.
15.6 Machine Learning: scikit-learn, TensorFlow, PyTorch.
16. Tools and Best Practices
16.1 Debugging: pdb, breakpoints.
16.2 Code style: PEP 8 guidelines.
16.3 Virtual environments: venv.
16.4 Version control: Git + GitHub.
📘 𝗣𝗿𝗲𝗺𝗶𝘂𝗺 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 : https://topmate.io/coding/914624
📙 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Join What's app channel for jobs updates: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
1. Python Fundamentals
1.1 Variables, constants, and comments.
1.2 Data types: int, float, str, bool, complex.
1.3 Input and output (input(), print(), formatted strings).
1.4 Python syntax: Indentation and code structure.
2. Operators
2.1 Arithmetic: +, -, *, /, %, //, **.
2.2 Comparison: ==, !=, <, >, <=, >=.
2.3 Logical: and, or, not.
2.4 Bitwise: &, |, ^, ~, <<, >>.
2.5 Identity: is, is not.
2.6 Membership: in, not in.
3. Control Flow
3.1 Conditional statements: if, elif, else.
3.2 Loops: for, while.
3.3 Loop control: break, continue, pass.
4. Data Structures
4.1 Lists: Indexing, slicing, methods (append(), pop(), sort(), etc.).
4.2 Tuples: Immutability, packing/unpacking.
4.3 Dictionaries: Key-value pairs, methods (get(), items(), etc.).
4.4 Sets: Unique elements, set operations (union, intersection).
4.5 Strings: Immutability, methods (split(), strip(), replace()).
5. Functions
5.1 Defining functions with def.
5.2 Arguments: Positional, keyword, default, *args, **kwargs.
5.3 Anonymous functions (lambda).
5.4 Recursion.
6. Modules and Packages
6.1 Importing: import, from ... import.
6.2 Standard libraries: math, os, sys, random, datetime, time.
6.3 Installing external libraries with pip.
7. File Handling
7.1 Open and close files (open(), close()).
7.2 Read and write (read(), write(), readlines()).
7.3 Using context managers (with open(...)).
8. Object-Oriented Programming (OOP)
8.1 Classes and objects.
8.2 Methods and attributes.
8.3 Constructor (init).
8.4 Inheritance, polymorphism, encapsulation.
8.5 Special methods (str, repr, etc.).
9. Error and Exception Handling
9.1 try, except, else, finally.
9.2 Raising exceptions (raise).
9.3 Custom exceptions.
10. Comprehensions
10.1 List comprehensions.
10.2 Dictionary comprehensions.
10.3 Set comprehensions.
11. Iterators and Generators
11.1 Creating iterators using iter() and next().
11.2 Generators with yield.
11.3 Generator expressions.
12. Decorators and Closures
12.1 Functions as first-class citizens.
12.2 Nested functions.
12.3 Closures.
12.4 Creating and applying decorators.
13. Advanced Topics
13.1 Context managers (with statement).
13.2 Multithreading and multiprocessing.
13.3 Asynchronous programming with async and await.
13.4 Python's Global Interpreter Lock (GIL).
14. Python Internals
14.1 Mutable vs immutable objects.
14.2 Memory management and garbage collection.
14.3 Python's name == "main" mechanism.
15. Libraries and Frameworks
15.1 Data Science: NumPy, Pandas, Matplotlib, Seaborn.
15.2 Web Development: Flask, Django, FastAPI.
15.3 Testing: unittest, pytest.
15.4 APIs: requests, http.client.
15.5 Automation: selenium, os.
15.6 Machine Learning: scikit-learn, TensorFlow, PyTorch.
16. Tools and Best Practices
16.1 Debugging: pdb, breakpoints.
16.2 Code style: PEP 8 guidelines.
16.3 Virtual environments: venv.
16.4 Version control: Git + GitHub.
📘 𝗣𝗿𝗲𝗺𝗶𝘂𝗺 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 : https://topmate.io/coding/914624
📙 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Join What's app channel for jobs updates: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
👍6❤2
If you're into deep learning, then you know that students usually one of the two paths:
- Computer vision
- Natural language processing (NLP)
If you're into NLP, here are 5 fundamental concepts you should know:
- Computer vision
- Natural language processing (NLP)
If you're into NLP, here are 5 fundamental concepts you should know:
Before we start, What is NLP?
Natural Language Processing (NLP) is a branch of artificial intelligence that focuses on the interaction between computers and humans through language.
It enables machines to understand, interpret, and respond to human language in a way that is both meaningful and useful.
Data scientists need NLP to analyze, process, and generate insights from large volumes of textual data, aiding in tasks ranging from sentiment analysis to automated summarization.
Natural Language Processing (NLP) is a branch of artificial intelligence that focuses on the interaction between computers and humans through language.
It enables machines to understand, interpret, and respond to human language in a way that is both meaningful and useful.
Data scientists need NLP to analyze, process, and generate insights from large volumes of textual data, aiding in tasks ranging from sentiment analysis to automated summarization.
👍2
Tokenization
Tokenization involves breaking down text into smaller units, such as words or phrases. This is the first step in preprocessing textual data for further analysis or NLP applications.
Tokenization involves breaking down text into smaller units, such as words or phrases. This is the first step in preprocessing textual data for further analysis or NLP applications.
👍2
Part-of-Speech Tagging:
This process involves identifying the part of speech for each word in a sentence (e.g., noun, verb, adjective). It is crucial for various NLP tasks that require understanding the grammatical structure of text.
This process involves identifying the part of speech for each word in a sentence (e.g., noun, verb, adjective). It is crucial for various NLP tasks that require understanding the grammatical structure of text.
❤1
Stemming and Lemmatization
These techniques reduce words to their base or root form. Stemming cuts off prefixes and suffixes, while lemmatization considers the morphological analysis of the words, leading to more accurate results.
These techniques reduce words to their base or root form. Stemming cuts off prefixes and suffixes, while lemmatization considers the morphological analysis of the words, leading to more accurate results.
❤1
Named Entity Recognition (NER)
NER identifies and classifies named entities in text into predefined categories such as the names of persons, organizations, locations, etc. It's essential for tasks like data extraction from documents and content classification.
NER identifies and classifies named entities in text into predefined categories such as the names of persons, organizations, locations, etc. It's essential for tasks like data extraction from documents and content classification.
❤2
Sentiment Analysis
This technique determines the emotional tone behind a body of text. It's widely used in business and social media monitoring to gauge public opinion and customer sentiment.
This technique determines the emotional tone behind a body of text. It's widely used in business and social media monitoring to gauge public opinion and customer sentiment.
Complete Roadmap to land a Data Scientist job in 2025
Phase 1: Build Foundations (3-6 months)
1. Learn Python programming basics
2. Understand statistics and mathematics concepts (linear algebra, calculus, probability)
3. Familiarize yourself with data visualization tools (Matplotlib, Seaborn)
Phase 2: Data Science Skills (6-9 months)
1. Master machine learning algorithms (scikit-learn, TensorFlow)
2. Learn data manipulation frameworks (Pandas, NumPy)
3. Study data visualization libraries (Plotly, Bokeh)
4. Understand database management systems (SQL, NoSQL)
Phase 3: Practice and Projects (3-6 months)
1. Work on personal projects (Kaggle competitions, datasets)
2. Participate in data science communities (GitHub, Reddit)
3. Build a portfolio showcasing skills
Phase 4: Job Preparation (1-3 months)
1. Update resume and online profiles (LinkedIn)
2. Practice whiteboarding and coding interviews
3. Prepare answers for common data science questions
Best Resources to learn Data Science 👇👇
Python Tutorial
Data Science Course by Kaggle
Machine Learning Course by Google
Best Data Science & Machine Learning Resources
Interview Process for Data Science Role at Amazon
Python Interview Resources
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
Phase 1: Build Foundations (3-6 months)
1. Learn Python programming basics
2. Understand statistics and mathematics concepts (linear algebra, calculus, probability)
3. Familiarize yourself with data visualization tools (Matplotlib, Seaborn)
Phase 2: Data Science Skills (6-9 months)
1. Master machine learning algorithms (scikit-learn, TensorFlow)
2. Learn data manipulation frameworks (Pandas, NumPy)
3. Study data visualization libraries (Plotly, Bokeh)
4. Understand database management systems (SQL, NoSQL)
Phase 3: Practice and Projects (3-6 months)
1. Work on personal projects (Kaggle competitions, datasets)
2. Participate in data science communities (GitHub, Reddit)
3. Build a portfolio showcasing skills
Phase 4: Job Preparation (1-3 months)
1. Update resume and online profiles (LinkedIn)
2. Practice whiteboarding and coding interviews
3. Prepare answers for common data science questions
Best Resources to learn Data Science 👇👇
Python Tutorial
Data Science Course by Kaggle
Machine Learning Course by Google
Best Data Science & Machine Learning Resources
Interview Process for Data Science Role at Amazon
Python Interview Resources
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
👍7❤3
5 Data Analytics Project Ideas to boost your resume:
1. Stock Market Portfolio Optimization
2. YouTube Data Collection & Analysis
3. Elections Ad Spending & Voting Patterns Analysis
4. EV Market Size Analysis
5. Metro Operations Optimization
1. Stock Market Portfolio Optimization
2. YouTube Data Collection & Analysis
3. Elections Ad Spending & Voting Patterns Analysis
4. EV Market Size Analysis
5. Metro Operations Optimization
👍9
Jupyter Notebooks are essential for data analysts working with Python.
Here’s how to make the most of this great tool:
1. 𝗢𝗿𝗴𝗮𝗻𝗶𝘇𝗲 𝗬𝗼𝘂𝗿 𝗖𝗼𝗱𝗲 𝘄𝗶𝘁𝗵 𝗖𝗹𝗲𝗮𝗿 𝗦𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲:
Break your notebook into logical sections using markdown headers. This helps you and your colleagues navigate the notebook easily and understand the flow of analysis. You could use headings (#, ##, ###) and bullet points to create a table of contents.
2. 𝗗𝗼𝗰𝘂𝗺𝗲𝗻𝘁 𝗬𝗼𝘂𝗿 𝗣𝗿𝗼𝗰𝗲𝘀𝘀:
Add markdown cells to explain your methodology, code, and guidelines for the user. This Enhances the readability and makes your notebook a great reference for future projects. You might want to include links to relevant resources and detailed docs where necessary.
3. 𝗨𝘀𝗲 𝗜𝗻𝘁𝗲𝗿𝗮𝗰𝘁𝗶𝘃𝗲 𝗪𝗶𝗱𝗴𝗲𝘁𝘀:
Leverage ipywidgets to create interactive elements like sliders, dropdowns, and buttons. With those, you can make your analysis more dynamic and allow users to explore different scenarios without changing the code. Create widgets for parameter tuning and real-time data visualization.
𝟰. 𝗞𝗲𝗲𝗽 𝗜𝘁 𝗖𝗹𝗲𝗮𝗻 𝗮𝗻𝗱 𝗠𝗼𝗱𝘂𝗹𝗮𝗿:
Write reusable functions and classes instead of long, monolithic code blocks. This will improve the code maintainability and efficiency of your notebook. You should store frequently used functions in separate Python noscripts and import them when needed.
5. 𝗩𝗶𝘀𝘂𝗮𝗹𝗶𝘇𝗲 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗘𝗳𝗳𝗲𝗰𝘁𝗶𝘃𝗲𝗹𝘆:
Utilize libraries like Matplotlib, Seaborn, and Plotly for your data visualizations. These clear and insightful visuals will help you to communicate your findings. Make sure to customize your plots with labels, noscripts, and legends to make them more informative.
6. 𝗩𝗲𝗿𝘀𝗶𝗼𝗻 𝗖𝗼𝗻𝘁𝗿𝗼𝗹 𝗬𝗼𝘂𝗿 𝗡𝗼𝘁𝗲𝗯𝗼𝗼𝗸𝘀:
Jupyter Notebooks are great for exploration, but they often lack systematic version control. Use tools like Git and nbdime to track changes, collaborate effectively, and ensure that your work is reproducible.
7. 𝗣𝗿𝗼𝘁𝗲𝗰𝘁 𝗬𝗼𝘂𝗿 𝗡𝗼𝘁𝗲𝗯𝗼𝗼𝗸𝘀:
Clean and secure your notebooks by removing sensitive information before sharing. This helps to prevent the leakage of private data. You should consider using environment variables for credentials.
Keeping these techniques in mind will help to transform your Jupyter Notebooks into great tools for analysis and communication.
I have curated the best interview resources to crack Python Interviews 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this 👍❤️
Here’s how to make the most of this great tool:
1. 𝗢𝗿𝗴𝗮𝗻𝗶𝘇𝗲 𝗬𝗼𝘂𝗿 𝗖𝗼𝗱𝗲 𝘄𝗶𝘁𝗵 𝗖𝗹𝗲𝗮𝗿 𝗦𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲:
Break your notebook into logical sections using markdown headers. This helps you and your colleagues navigate the notebook easily and understand the flow of analysis. You could use headings (#, ##, ###) and bullet points to create a table of contents.
2. 𝗗𝗼𝗰𝘂𝗺𝗲𝗻𝘁 𝗬𝗼𝘂𝗿 𝗣𝗿𝗼𝗰𝗲𝘀𝘀:
Add markdown cells to explain your methodology, code, and guidelines for the user. This Enhances the readability and makes your notebook a great reference for future projects. You might want to include links to relevant resources and detailed docs where necessary.
3. 𝗨𝘀𝗲 𝗜𝗻𝘁𝗲𝗿𝗮𝗰𝘁𝗶𝘃𝗲 𝗪𝗶𝗱𝗴𝗲𝘁𝘀:
Leverage ipywidgets to create interactive elements like sliders, dropdowns, and buttons. With those, you can make your analysis more dynamic and allow users to explore different scenarios without changing the code. Create widgets for parameter tuning and real-time data visualization.
𝟰. 𝗞𝗲𝗲𝗽 𝗜𝘁 𝗖𝗹𝗲𝗮𝗻 𝗮𝗻𝗱 𝗠𝗼𝗱𝘂𝗹𝗮𝗿:
Write reusable functions and classes instead of long, monolithic code blocks. This will improve the code maintainability and efficiency of your notebook. You should store frequently used functions in separate Python noscripts and import them when needed.
5. 𝗩𝗶𝘀𝘂𝗮𝗹𝗶𝘇𝗲 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗘𝗳𝗳𝗲𝗰𝘁𝗶𝘃𝗲𝗹𝘆:
Utilize libraries like Matplotlib, Seaborn, and Plotly for your data visualizations. These clear and insightful visuals will help you to communicate your findings. Make sure to customize your plots with labels, noscripts, and legends to make them more informative.
6. 𝗩𝗲𝗿𝘀𝗶𝗼𝗻 𝗖𝗼𝗻𝘁𝗿𝗼𝗹 𝗬𝗼𝘂𝗿 𝗡𝗼𝘁𝗲𝗯𝗼𝗼𝗸𝘀:
Jupyter Notebooks are great for exploration, but they often lack systematic version control. Use tools like Git and nbdime to track changes, collaborate effectively, and ensure that your work is reproducible.
7. 𝗣𝗿𝗼𝘁𝗲𝗰𝘁 𝗬𝗼𝘂𝗿 𝗡𝗼𝘁𝗲𝗯𝗼𝗼𝗸𝘀:
Clean and secure your notebooks by removing sensitive information before sharing. This helps to prevent the leakage of private data. You should consider using environment variables for credentials.
Keeping these techniques in mind will help to transform your Jupyter Notebooks into great tools for analysis and communication.
I have curated the best interview resources to crack Python Interviews 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this 👍❤️
👍4
For working professionals willing to pivot their careers to AI:
Here are the steps you can take right now:
1. Learn the basics of AI
==================
You need to understand the differences among various AI jargons (e.g., what is the difference between statistical ML vs. deep learning? What exactly is an LLM?) and when to use which to solve a given business problem. Many fast-paced courses can teach you all of this without having to learn coding. (Shameless plug: I have a course that I will add in the comments section below)
2. Build an AI project in your current work
==============================
Find a problem statement in your current work that can be solved using AI and will deliver some value. Work on this during your extra hours, then showcase it to your management to get official approval to make it a full-fledged project.
3. Collaborate with the AI team in your company for inner sourcing
================================================
Many companies have the concept of inner sourcing where, say, an AI team is too busy and has a list of tasks they have opened on their GitHub repository that others can work on. Use this as an opportunity to do some real AI work and build rapport with the AI team.
4. Attend AI conferences
==================
By attending AI conferences, you will not only learn but also build a network with AI professionals who will help you in your AI career journey.
5. Attend an AI bootcamp at a university or online learning company
=================================================
Artificial Intelligence
👉Telegram Link: https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5
Like for more ❤️
All the best 👍👍
Here are the steps you can take right now:
1. Learn the basics of AI
==================
You need to understand the differences among various AI jargons (e.g., what is the difference between statistical ML vs. deep learning? What exactly is an LLM?) and when to use which to solve a given business problem. Many fast-paced courses can teach you all of this without having to learn coding. (Shameless plug: I have a course that I will add in the comments section below)
2. Build an AI project in your current work
==============================
Find a problem statement in your current work that can be solved using AI and will deliver some value. Work on this during your extra hours, then showcase it to your management to get official approval to make it a full-fledged project.
3. Collaborate with the AI team in your company for inner sourcing
================================================
Many companies have the concept of inner sourcing where, say, an AI team is too busy and has a list of tasks they have opened on their GitHub repository that others can work on. Use this as an opportunity to do some real AI work and build rapport with the AI team.
4. Attend AI conferences
==================
By attending AI conferences, you will not only learn but also build a network with AI professionals who will help you in your AI career journey.
5. Attend an AI bootcamp at a university or online learning company
=================================================
Artificial Intelligence
👉Telegram Link: https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5
Like for more ❤️
All the best 👍👍
👍4❤2
Forwarded from Health Fitness & Diet Tips - Gym Motivation 💪
Food is Medicine:
🧄. Garlic - good for the immune system
🍌. Bananas - good for the nerves
🍠. Sweet potatoes - good for digestion
🌰. Walnuts - good for memory
🍊. Oranges - good for the skin
🥬. Kale - good for the bones
🌻. Chia seeds - good for the heart
🌶. Peppers - good for metabolism
🍄. Mushrooms - good for the immune system
🍅. Tomatoes - good for the blood
🫐. Blueberries - good for the brain
- If you aren't currently following us, you'll probably never see us again. 🗿
🧄. Garlic - good for the immune system
🍌. Bananas - good for the nerves
🍠. Sweet potatoes - good for digestion
🌰. Walnuts - good for memory
🍊. Oranges - good for the skin
🥬. Kale - good for the bones
🌻. Chia seeds - good for the heart
🌶. Peppers - good for metabolism
🍄. Mushrooms - good for the immune system
🍅. Tomatoes - good for the blood
🫐. Blueberries - good for the brain
- If you aren't currently following us, you'll probably never see us again. 🗿
👍7
⭐⭐⭐ Advance Level Data science Projects ⭐⭐⭐
1) Identify your Digits Dataset : https://www.kaggle.com/c/digit-recognizer/data
2) Recommendation Engine : https://cseweb.ucsd.edu/~jmcauley/datasets.html
3) Visual QA : https://visualqa.org/download.html
4) Vox Celebrity : http://www.robots.ox.ac.uk/~vgg/data/voxceleb/
5) Breast cancer classification : https://www.kaggle.com/martinab/breast-cancer-classification-wisconsin-dataset
6) Traffic signals : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
7) Image caption generator : https://academictorrents.com/details/9dea07ba660a722ae1008c4c8afdd303b6f6e53b
1) Identify your Digits Dataset : https://www.kaggle.com/c/digit-recognizer/data
2) Recommendation Engine : https://cseweb.ucsd.edu/~jmcauley/datasets.html
3) Visual QA : https://visualqa.org/download.html
4) Vox Celebrity : http://www.robots.ox.ac.uk/~vgg/data/voxceleb/
5) Breast cancer classification : https://www.kaggle.com/martinab/breast-cancer-classification-wisconsin-dataset
6) Traffic signals : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
7) Image caption generator : https://academictorrents.com/details/9dea07ba660a722ae1008c4c8afdd303b6f6e53b
👍7
Practice projects to consider:
1. Implement a basic search engine: Read a set of documents and build an index of keywords. Then, implement a search function that returns a list of documents that match the query.
2. Build a recommendation system: Read a set of user-item interactions and build a recommendation system that suggests items to users based on their past behavior.
3. Create a data analysis tool: Read a large dataset and implement a tool that performs various analyses, such as calculating summary statistics, visualizing distributions, and identifying patterns and correlations.
4. Implement a graph algorithm: Study a graph algorithm such as Dijkstra's shortest path algorithm, and implement it in Python. Then, test it on real-world graphs to see how it performs.
1. Implement a basic search engine: Read a set of documents and build an index of keywords. Then, implement a search function that returns a list of documents that match the query.
2. Build a recommendation system: Read a set of user-item interactions and build a recommendation system that suggests items to users based on their past behavior.
3. Create a data analysis tool: Read a large dataset and implement a tool that performs various analyses, such as calculating summary statistics, visualizing distributions, and identifying patterns and correlations.
4. Implement a graph algorithm: Study a graph algorithm such as Dijkstra's shortest path algorithm, and implement it in Python. Then, test it on real-world graphs to see how it performs.
👍6
Data Analytics Projects for Beginners 👇
Web Scraping
https://github.com/shreyaswankhede/IMDb-Web-Scraping-and-Sentiment-Analysis
Product Price Scraping and Analysis
https://github.com/CodesdaLu/Web-Scrapping
News Scraping
https://github.com/rohit-yadav/scraping-news-articles
Real Time Stock Price Scraping with Python
https://youtu.be/rONhdonaWUo?si=A3oDEVbLIAP78cCz
Zomato Analysis
https://youtu.be/fFi_TBw27is?si=E0iLd3J06YHfQkRk
IPL Analysis
https://github.com/Yashmenaria1/IPL-Data-Exploration
https://www.youtube.com/watch?v=ur-v0dv0Qtw
https://www.youtube.com/watch?v=ur-v0dv0Qtw
Football Data Analysis
https://youtu.be/yat7soj__4w?si=h5CLIvVFzzKm8IEP
Market Basket Analysis
https://youtu.be/Ne8Sbp2hJIk?si=ThEuvdOnRrpcVjOg
Customer Churn Prediction
https://github.com/Pradnya1208/Telecom-Customer-Churn-prediction
Employee’s Performance for HR Analytics
https://www.kaggle.com/code/rajatraj0502/employee-s-performance-for-hr-analytics
Food Price Prediction
https://github.com/VectorInstitute/foodprice-forecasting
Web Scraping
https://github.com/shreyaswankhede/IMDb-Web-Scraping-and-Sentiment-Analysis
Product Price Scraping and Analysis
https://github.com/CodesdaLu/Web-Scrapping
News Scraping
https://github.com/rohit-yadav/scraping-news-articles
Real Time Stock Price Scraping with Python
https://youtu.be/rONhdonaWUo?si=A3oDEVbLIAP78cCz
Zomato Analysis
https://youtu.be/fFi_TBw27is?si=E0iLd3J06YHfQkRk
IPL Analysis
https://github.com/Yashmenaria1/IPL-Data-Exploration
https://www.youtube.com/watch?v=ur-v0dv0Qtw
https://www.youtube.com/watch?v=ur-v0dv0Qtw
Football Data Analysis
https://youtu.be/yat7soj__4w?si=h5CLIvVFzzKm8IEP
Market Basket Analysis
https://youtu.be/Ne8Sbp2hJIk?si=ThEuvdOnRrpcVjOg
Customer Churn Prediction
https://github.com/Pradnya1208/Telecom-Customer-Churn-prediction
Employee’s Performance for HR Analytics
https://www.kaggle.com/code/rajatraj0502/employee-s-performance-for-hr-analytics
Food Price Prediction
https://github.com/VectorInstitute/foodprice-forecasting
👍8❤1
If you want to get a job as a machine learning engineer, don’t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best 👍👍
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best 👍👍
👍5❤1