Вышло новое видео (и статья) от Disney Research про генерацию реалистичных движений робоперсонажей с использованием диффузионных моделей.
YouTube
Robot Motion Diffusion Model: Motion Generation for Robotic Characters
Recent advancements in generative motion models have achieved remarkable results, enabling the synthesis of lifelike human motions from textual denoscriptions. These kinematic approaches, while visually appealing, often produce motions that fail to adhere…
💅4🔥1🌭1
На этой неделе побывал на одной из крупнейших конференций по робототехнике — IROS, которая в этом году впервые прошла на Ближнем Востоке, в Абу-Даби. Представлял свои работы: сначала выступил с трёхминутным тизером, а затем в течение двух часов стоял у постера, объясняя детали заинтересованным коллегам. Я всегда критично отношусь к своим результатам, поэтому не ожидал большого ажиотажа. В итоге нашлось около 15 человек, которым моя работа показалась интересной.
К сожалению, организация конференции оставляла желать лучшего. В первые два дня многим не хватило еды, а на банкете — мест за столами, приходилось сидеть где попало. Зона для постеров была тесной, а интернет — крайне ненадёжным, что приводило к постоянным сбоям у онлайн-спикеров.
Тем не менее, я рад, что сьездил; удалось приятно пообщаться с интересными студентами из разных университетов, друзьями и бывшими коллегами.
К сожалению, организация конференции оставляла желать лучшего. В первые два дня многим не хватило еды, а на банкете — мест за столами, приходилось сидеть где попало. Зона для постеров была тесной, а интернет — крайне ненадёжным, что приводило к постоянным сбоям у онлайн-спикеров.
Тем не менее, я рад, что сьездил; удалось приятно пообщаться с интересными студентами из разных университетов, друзьями и бывшими коллегами.
👍12🔥8💯1
Трансформеры, без сомнения, одни из самых успешных моделей в машинном обучении. За ChatGPT и другими большими языковыми моделями стоит именно трансформер. На IROS, когда я пару раз спрашивал о том, как коллегам удалось добиться впечатляющих результатов, мне отвечали: "Просто накормили трансформеру данные — и вуа-ля, успех!"
Поскольку мне пора начинать искать работу, я решил разобраться в архитектуре трансформера. Вот лучшие ресурсы, которые мне удалось найти:
1️⃣ Визуальное объяснение от 3Blue1Brown — без сложной математики, но с красивыми иллюстрациями.
2️⃣ Известная статья The Illustrated Transformer от Jay Alamar. Даже многие университетские курсы ссылаются на эту статью.
3️⃣ Подробное объяснение с иллюстрациями и математикой от Елены Войты.
4️⃣ Статья от Гарварда The Annotated Transformer для тех, кто хочет реализовать трансформер на PyTorch.
5️⃣ Пояснения в книгах Understanding Deep Learning
и Deep Learning: Foundations and Concepts тоже показались мне доступными и полезными.
Поскольку мне пора начинать искать работу, я решил разобраться в архитектуре трансформера. Вот лучшие ресурсы, которые мне удалось найти:
1️⃣ Визуальное объяснение от 3Blue1Brown — без сложной математики, но с красивыми иллюстрациями.
2️⃣ Известная статья The Illustrated Transformer от Jay Alamar. Даже многие университетские курсы ссылаются на эту статью.
3️⃣ Подробное объяснение с иллюстрациями и математикой от Елены Войты.
4️⃣ Статья от Гарварда The Annotated Transformer для тех, кто хочет реализовать трансформер на PyTorch.
5️⃣ Пояснения в книгах Understanding Deep Learning
и Deep Learning: Foundations and Concepts тоже показались мне доступными и полезными.
👍11❤1🥰1
Forwarded from DeepSchool
Методы второго порядка используют вторые производные функции потерь. Важный элемент этих методов — гессиан. Он и является второй производной по параметрам модели.
Главная проблема гессиана — его долго считать. Учёные придумали различные методы для его аппроксимации, чтобы экономить вычисления. А недавно появились и алгоритмы оптимизации, которые используют эти аппроксимации.
О методах второго порядка мы и записали наше новое видео!
В нём Шамиль Мамедов, исследователь из Amazon Robotics, напоминает теорию численной оптимизации и рассказывает про методы приближения гессиана. А также проходится по Sophia — свежему оптимизатору, который использует методы второго порядка.
Смотрите новое видео на Youtube!
Please open Telegram to view this post
VIEW IN TELEGRAM
YouTube
Гессиан, или методы второго порядка в численной оптимизации
В DeepSchool мы повышаем квалификацию DL-инженеров: https://deepschool.ru/?utm_source=yt&utm_content=hessian
Наш курс "Ракета в Computer Vision": https://deepschool.ru/cvrocket?utm_source=yt&utm_content=hessian
Методы второго порядка используют вторые производные…
Наш курс "Ракета в Computer Vision": https://deepschool.ru/cvrocket?utm_source=yt&utm_content=hessian
Методы второго порядка используют вторые производные…
🔥11👍4❤2
Forwarded from DeepSchool
Почему RL — это сложно? И как Decision Transformer меняет правила игры
Обучение с подкреплением (RL) часто звучит как магия: агент учится решать задачи через взаимодействие с окружающей средой. Тыкнул сюда, получил минус балл, постараюсь больше так не делать. Тыкнул сюда, получил плюс балл — о, повторю!
Но в реальности всё сложнее. Представьте робота, которому нужно научиться управлять автомобилем. Для обучения требуется симулятор, который моделирует дорожные условия. Создать его — задача не из лёгких: это дорого, долго, а иногда просто невозможно. Более того, ошибки агента в симуляторе могут не просто «остаться в игре», но привести к серьёзным последствиям, если перенести их в реальный мир.
Допустим, вы хотите обучить робота доставлять посылки. Если он учится в реальном мире, то каждое «неудачное» действие — это разбитый аппарат. А симуляторы часто слишком далеки от реальности, и агент начинает пользоваться их несовершенствами, что делает результаты обучения неприменимыми.
Альтернативный способ для создания умных агентов: агент учится воспроизводить траектории, созданные человеком. Проблема в том, что он может лишь копировать, но не создавать новые стратегии для достижения лучших результатов. RL, наоборот, строит стратегии сам, но упирается в проблему сложности и дороговизны.
Decision Transformer (DT) как раз призван решить эту проблему, генерируя на основе имеющихся данных новые стратегии. Он использует идеи RL и переформулирует проблему RL как задачу генерации последовательности.
Проще говоря, вместо «учимся через ошибки», DT говорит: «Вот данные о прошлом опыте, вот цель в виде суммы будущих наград — давайте сгенерируем траекторию, которая достигнет цель».
И это совершенно новый способ решения задач по управлению роботами. Подробнее о нём мы рассказали в новой статье: https://deepschool-pro.notion.site/Decision-Transformer-92feae6bd93d42da997cd44653f92a74?pvs=4
Обучение с подкреплением (RL) часто звучит как магия: агент учится решать задачи через взаимодействие с окружающей средой. Тыкнул сюда, получил минус балл, постараюсь больше так не делать. Тыкнул сюда, получил плюс балл — о, повторю!
Но в реальности всё сложнее. Представьте робота, которому нужно научиться управлять автомобилем. Для обучения требуется симулятор, который моделирует дорожные условия. Создать его — задача не из лёгких: это дорого, долго, а иногда просто невозможно. Более того, ошибки агента в симуляторе могут не просто «остаться в игре», но привести к серьёзным последствиям, если перенести их в реальный мир.
Допустим, вы хотите обучить робота доставлять посылки. Если он учится в реальном мире, то каждое «неудачное» действие — это разбитый аппарат. А симуляторы часто слишком далеки от реальности, и агент начинает пользоваться их несовершенствами, что делает результаты обучения неприменимыми.
Альтернативный способ для создания умных агентов: агент учится воспроизводить траектории, созданные человеком. Проблема в том, что он может лишь копировать, но не создавать новые стратегии для достижения лучших результатов. RL, наоборот, строит стратегии сам, но упирается в проблему сложности и дороговизны.
Decision Transformer (DT) как раз призван решить эту проблему, генерируя на основе имеющихся данных новые стратегии. Он использует идеи RL и переформулирует проблему RL как задачу генерации последовательности.
Проще говоря, вместо «учимся через ошибки», DT говорит: «Вот данные о прошлом опыте, вот цель в виде суммы будущих наград — давайте сгенерируем траекторию, которая достигнет цель».
И это совершенно новый способ решения задач по управлению роботами. Подробнее о нём мы рассказали в новой статье: https://deepschool-pro.notion.site/Decision-Transformer-92feae6bd93d42da997cd44653f92a74?pvs=4
deepschool-pro on Notion
Decision Transformer: модель для управления роботами | Notion
Автор: Шамиль Мамедов
❤8🔥4
За последние пару недель произошло много интересного.
Закончилась моя стажировка в Amazon, и последние дни пришлось работать очень много, чтобы получить хорошие результаты и задокументировать их. Позже обязательно расскажу, чем занимался во второй половине стажировки.
После её завершения я собрал вещи и вернулся в Бельгию. Сейчас живу как настоящий бродяга — то у одних друзей, то у других.
А сегодня состоялась моя предзащита диссертации! Всё прошло хорошо, сложных вопросов было немного. Публичная защита запланирована на 23 января, и после неё мне вручат сертификат. Тогда я смогу добавить к своему имени в LinkedIn заветное "PhD"😄.
До этого мне нужно успеть внести все правки, предложенные членами жюри, и подготовить презентацию высокого уровня для широкой публики. Думал, что смогу отдохнуть после предзащиты, но не тут-то было.
Закончилась моя стажировка в Amazon, и последние дни пришлось работать очень много, чтобы получить хорошие результаты и задокументировать их. Позже обязательно расскажу, чем занимался во второй половине стажировки.
После её завершения я собрал вещи и вернулся в Бельгию. Сейчас живу как настоящий бродяга — то у одних друзей, то у других.
А сегодня состоялась моя предзащита диссертации! Всё прошло хорошо, сложных вопросов было немного. Публичная защита запланирована на 23 января, и после неё мне вручат сертификат. Тогда я смогу добавить к своему имени в LinkedIn заветное "PhD"😄.
До этого мне нужно успеть внести все правки, предложенные членами жюри, и подготовить презентацию высокого уровня для широкой публики. Думал, что смогу отдохнуть после предзащиты, но не тут-то было.
❤11👍7🍾2🫡2😎2
Уже сегодня, 23 января, в 10:00 CET состоится защита моей PhD диссертации. Если интересно, можете присоединиться к стриму по этой ссылке (PIN: 294891).
Защита пройдет на английском языке и займет не более двух часов. Первые ~40 минут я буду представлять свою работу, а затем члены экзаменационной комиссии зададут свои вопросы.
Защита пройдет на английском языке и займет не более двух часов. Первые ~40 минут я буду представлять свою работу, а затем члены экзаменационной комиссии зададут свои вопросы.
🔥13❤3🏆3🫡1
Друзья, хочу поделиться с вами карьерным апдейтом.
После четырёх месяцев активного поиска я присоединился к Сбер Автотех (Navio) в Москве на позицию Deep Learning Engineer, Motion Planning. Изначально я планировал остаться в области манипуляции роботами, но выяснилось, что и в манипуляции, и в автономном вождении активно применяются методы обучения по демонстрациям и обучения с подкреплением для планирования движения. В новой роли я буду заниматься улучшением модели планирования траектории для автономного автомобиля.
Я переехал в Москву вместе с семьёй и буду рад встретиться.
После четырёх месяцев активного поиска я присоединился к Сбер Автотех (Navio) в Москве на позицию Deep Learning Engineer, Motion Planning. Изначально я планировал остаться в области манипуляции роботами, но выяснилось, что и в манипуляции, и в автономном вождении активно применяются методы обучения по демонстрациям и обучения с подкреплением для планирования движения. В новой роли я буду заниматься улучшением модели планирования траектории для автономного автомобиля.
Я переехал в Москву вместе с семьёй и буду рад встретиться.
🔥26😎3
Всем привет! Сколько лет, сколько зим.
У ребят из @deep_school есть классный проект: они зовут обычных роботяг вести канал @deepschool_underthehood и рассказать про работу и жизнь вне ее. На этой неделе там буду я — расскажу про ML в автономном вождении, карьеру в робототехнике и немного про личное.
Залетайте в канал, читайте и задавайте вопросы! Ну и тут репосты тоже будут.
У ребят из @deep_school есть классный проект: они зовут обычных роботяг вести канал @deepschool_underthehood и рассказать про работу и жизнь вне ее. На этой неделе там буду я — расскажу про ML в автономном вождении, карьеру в робототехнике и немного про личное.
Залетайте в канал, читайте и задавайте вопросы! Ну и тут репосты тоже будут.
👍9🔥6💯3
Forwarded from DeepSchool / underthehood (Shamil Mamedov)
Про работу
Я занимаюсь планированием траекторий для автономных машин. Проще говоря: моя задача — на основе дорожной обстановки и маршрута предложить траекторию на несколько секунд вперёд.
На первый взгляд — задача плоская: никакого 3D, как у дронов, и не такие сложные движения, как у робо-рук. Но на практике — одна из самых сложных областей, потому что нужно учитывать взаимодействие с другими машинами и при этом обеспечивать безопасность.
Раньше траектории строили классическими методами поиска и эвристиками. Но со временем стало ясно: невозможно прописать правила для всех дорожных ситуаций. Поэтому сегодня почти все крупные компании делают ставку на ML — легче «научить» модель на данных, чем изобретать новые костыли-эвристики.
В отличие от многих областей, где инженеры уже опираются на foundation-модели, в автономном вождении модели всё ещё учат с нуля. Почти всегда это архитектура «энкодер-декодер»: энкодер (почти всегда трансформер) кодирует дорожную сцену; декодер (трансформер или диффузия) предсказывает траекторию.
Ключевая проблема не в моделях, а в их оценке. Нельзя просто сравнить предсказанную траекторию с реальной (экспертной) — такая метрика игнорирует накопление ошибок. В реальной езде маленькие ошибки могут накапливаться и приводить к опасным ситуациям (out-of-distribution). Поэтому используют симуляторы или — в идеале — реальные тесты на дорогах.
Если интересно глубже погрузиться в тему планирования в автономном вождении — вот мой пост блоге deep-school. Если есть вопросы про работу в автономном вождении, спрашивайте в комментариях🙂
Я занимаюсь планированием траекторий для автономных машин. Проще говоря: моя задача — на основе дорожной обстановки и маршрута предложить траекторию на несколько секунд вперёд.
На первый взгляд — задача плоская: никакого 3D, как у дронов, и не такие сложные движения, как у робо-рук. Но на практике — одна из самых сложных областей, потому что нужно учитывать взаимодействие с другими машинами и при этом обеспечивать безопасность.
Раньше траектории строили классическими методами поиска и эвристиками. Но со временем стало ясно: невозможно прописать правила для всех дорожных ситуаций. Поэтому сегодня почти все крупные компании делают ставку на ML — легче «научить» модель на данных, чем изобретать новые костыли-эвристики.
В отличие от многих областей, где инженеры уже опираются на foundation-модели, в автономном вождении модели всё ещё учат с нуля. Почти всегда это архитектура «энкодер-декодер»: энкодер (почти всегда трансформер) кодирует дорожную сцену; декодер (трансформер или диффузия) предсказывает траекторию.
Ключевая проблема не в моделях, а в их оценке. Нельзя просто сравнить предсказанную траекторию с реальной (экспертной) — такая метрика игнорирует накопление ошибок. В реальной езде маленькие ошибки могут накапливаться и приводить к опасным ситуациям (out-of-distribution). Поэтому используют симуляторы или — в идеале — реальные тесты на дорогах.
Если интересно глубже погрузиться в тему планирования в автономном вождении — вот мой пост блоге deep-school. Если есть вопросы про работу в автономном вождении, спрашивайте в комментариях🙂
DeepSchool
Кто за рулём?! Трансформер - DeepSchool
Разбираем планирование движения — ключевую задачу беспилотников, где на первый план выходит архитектура трансформера
👍6
Принёс вам хорошую обзорную статью про VLA.
Но сначала — коротко о том, что это такое. Всё началось с больших языковых моделей (LLM), с которыми сегодня знакомы почти все. Позже им «дали глаза» — так появились vision-language models (VLM), которые принимают на вход изображение и текст и умеют отвечать на вопросы и рассуждать о картинках.
Логичный следующий шаг: если VLM понимают изображения и язык, почему бы не научить их генерировать действия? Так появились VLA — модели, которые уже показывают неплохие результаты и становятся важным шагом к роботам общего назначения. Но впереди ещё много работы, прежде чем мы приблизимся к 99.9% успеха.
В этой обзорной статье отлично разбираются современные подходы к VLA. Рекомендую!
Но сначала — коротко о том, что это такое. Всё началось с больших языковых моделей (LLM), с которыми сегодня знакомы почти все. Позже им «дали глаза» — так появились vision-language models (VLM), которые принимают на вход изображение и текст и умеют отвечать на вопросы и рассуждать о картинках.
Логичный следующий шаг: если VLM понимают изображения и язык, почему бы не научить их генерировать действия? Так появились VLA — модели, которые уже показывают неплохие результаты и становятся важным шагом к роботам общего назначения. Но впереди ещё много работы, прежде чем мы приблизимся к 99.9% успеха.
В этой обзорной статье отлично разбираются современные подходы к VLA. Рекомендую!
arXiv.org
Vision Language Action Models in Robotic Manipulation: A Systematic Review
Vision Language Action (VLA) models represent a transformative shift in robotics, with the aim of unifying visual perception, natural language understanding, and embodied control within a single...
🔥9❤5❤🔥3
На прошлой неделе Hugging Face порадовал сразу двумя релизами для всех, кто интересуется робототехникой
1️⃣ Обзорная статья по Robot Learning
Отличный разбор всех современных подходов: обучение с подкреплением, с демонстраций и фундаментальные модели для робототехники (aka VLA — Vision-Language-Action модели).
2️⃣ Полноценный курс по Robot Learning
Подходит даже для абсолютных новичков. Авторы начинают с основ классической робототехники и плавно переходят к фундаментальным моделям.
Если давно хотели разобраться, сейчас идеальный момент — всё собрано в одном месте.
1️⃣ Обзорная статья по Robot Learning
Отличный разбор всех современных подходов: обучение с подкреплением, с демонстраций и фундаментальные модели для робототехники (aka VLA — Vision-Language-Action модели).
2️⃣ Полноценный курс по Robot Learning
Подходит даже для абсолютных новичков. Авторы начинают с основ классической робототехники и плавно переходят к фундаментальным моделям.
Если давно хотели разобраться, сейчас идеальный момент — всё собрано в одном месте.
👍10🔥6❤3
Написали с Антоном небольшую статью про VLA для DeepSchool. Если интересно, заходите читать
❤🔥4🔥3👍2
Forwarded from DeepSchool
Vision-Language-Action (VLA) Models: от токенов к действиям
Современные мультимодальные модели умеют работать с визуальными данными и текстом. Следующий шаг их развития — взаимодействие с физическим миром. Для управления роботами создаются Vision-Language-Action (VLA) модели, которые переводят визуальные данные и текстовые инструкции прямо в моторные команды робота. О том, как устроены такие модели, рассказываем в новой статье. 🤖
Из неё вы узнаете:
• как устроены VLA-модели — от визуального энкодера до генератора действий
• какие архитектуры используются для предсказания движений — от дискретных токенов до диффузий и Flow Matching'а
• какие существуют подходы к дообучению систем — от полного fine-tuning'а до PEFT-методов, таких как LoRA
• с какими проблемами сталкиваются VLA в реальном мире: задержки, накопление ошибок и безопасность
Читайте новую статью по ссылке! 🚀
🪔 DeepSchool
Современные мультимодальные модели умеют работать с визуальными данными и текстом. Следующий шаг их развития — взаимодействие с физическим миром. Для управления роботами создаются Vision-Language-Action (VLA) модели, которые переводят визуальные данные и текстовые инструкции прямо в моторные команды робота. О том, как устроены такие модели, рассказываем в новой статье. 🤖
Из неё вы узнаете:
• как устроены VLA-модели — от визуального энкодера до генератора действий
• какие архитектуры используются для предсказания движений — от дискретных токенов до диффузий и Flow Matching'а
• какие существуют подходы к дообучению систем — от полного fine-tuning'а до PEFT-методов, таких как LoRA
• с какими проблемами сталкиваются VLA в реальном мире: задержки, накопление ошибок и безопасность
Читайте новую статью по ссылке! 🚀
Please open Telegram to view this post
VIEW IN TELEGRAM
DeepSchool
Vision-Language-Action (VLA) Models: от токенов к действиям - DeepSchool
Рассказываем, как устроены VLA-модели — от визуального энкодера до генератора действий.
🔥6❤🔥5👍4🐳1
Что такое action chunk и зачем он нужен
Раньше контроллеры управления роботами на каждом временном шаге предсказывали ровно одно действие — например, положение и ориентацию захвата. Это действие затем отрабатывалось низкоуровневыми контроллерами.
На следующем шаге контроллер получал новые наблюдения (изображения с камер и состояние робота) и предсказывал следующее действие. Такой подход позволял роботу быстро реагировать на изменения в окружении.
Сегодня большинство vision-language-action (VLA) и других visuomotor-моделей используют action chunk — проще говоря, генерацию последовательности действий, а не одного действия. Есть несколько причин, почему этот подход работает лучше.
1️⃣ Генерация высокочастотных (быстрых) траекторий
VLA-контроллеры обычно работают на низкой частоте, например ~10 Гц. Это означает, что максимальная частота движения не превышает 5 Гц, что недостаточно для быстрых и точных манёвров.
При использовании action chunk модель может сгенерировать последовательность действий с любой частотой и передать её низкоуровневому контроллеру. В результате становится возможна более динамическая и плавная манипуляция.
2️⃣ Ансамблирование действий
Если в момент времени t_1 мы предсказываем действия (a_1, a_2, a_3, a_4), а в момент t_3 — (a_3, a_4, a_5, a_6), то пересекающиеся действия (a_3, a_4) можно усреднить.
Эмпирически такое ансамблирование повышает стабильность и качество поведения модели.
3️⃣ Компенсация задержек (latency)
Пока в момент t_1 контроллер генерирует действия на основе наблюдений o_1, робот уже успевает сместиться. В результате предсказанное действие соответствует прошлому состоянию сцены.
При использовании последовательности действий и хорошего низкоуровневого контроллера робот продолжает двигаться к запланированному положению, пока модель выполняет инференс, что снижает эффект запаздывания.
В другой раз расскажу как лучше можно решить проблему с запаздыванием.
Раньше контроллеры управления роботами на каждом временном шаге предсказывали ровно одно действие — например, положение и ориентацию захвата. Это действие затем отрабатывалось низкоуровневыми контроллерами.
На следующем шаге контроллер получал новые наблюдения (изображения с камер и состояние робота) и предсказывал следующее действие. Такой подход позволял роботу быстро реагировать на изменения в окружении.
Сегодня большинство vision-language-action (VLA) и других visuomotor-моделей используют action chunk — проще говоря, генерацию последовательности действий, а не одного действия. Есть несколько причин, почему этот подход работает лучше.
1️⃣ Генерация высокочастотных (быстрых) траекторий
VLA-контроллеры обычно работают на низкой частоте, например ~10 Гц. Это означает, что максимальная частота движения не превышает 5 Гц, что недостаточно для быстрых и точных манёвров.
При использовании action chunk модель может сгенерировать последовательность действий с любой частотой и передать её низкоуровневому контроллеру. В результате становится возможна более динамическая и плавная манипуляция.
2️⃣ Ансамблирование действий
Если в момент времени t_1 мы предсказываем действия (a_1, a_2, a_3, a_4), а в момент t_3 — (a_3, a_4, a_5, a_6), то пересекающиеся действия (a_3, a_4) можно усреднить.
Эмпирически такое ансамблирование повышает стабильность и качество поведения модели.
3️⃣ Компенсация задержек (latency)
Пока в момент t_1 контроллер генерирует действия на основе наблюдений o_1, робот уже успевает сместиться. В результате предсказанное действие соответствует прошлому состоянию сцены.
При использовании последовательности действий и хорошего низкоуровневого контроллера робот продолжает двигаться к запланированному положению, пока модель выполняет инференс, что снижает эффект запаздывания.
В другой раз расскажу как лучше можно решить проблему с запаздыванием.
✍8🔥5👍3
Друзья, поздравляю всех с наступившим Новым годом!
Надеюсь, что 2025 год был для вас полон побед — маленьких и больших, а следующий станет ещё лучше🦾
Этот пост — небольшая рефлексия по итогам 2025 года и одновременно вопрос к вам о том, что вам было бы интересно читать в этом канале.
Для меня 2025 год выдался очень насыщенным. В январе я защитился в KU (запись защиты) Leuven и спустя почти 4 года стал PhD.
Сразу после этого мы с женой и нашей трёхмесячной дочкой переехали в Баку, Азербайджан — чтобы спокойно искать работу в США, UK и России. После стажировки в Amazon и окончания PhD я, честно говоря, ожидал больше приглашений на интервью, чем получил.
Прошёл 8кругов ада этапов интервью в Яндекс Humanoid и в итоге получил отказ; дошёл до финала в Humanoids. Офферы же получил от Центра робототехники Сбера и Navio.
Хотя автономное вождение изначально не было для меня приоритетом, по совокупности интереса и компенсации этот вариант оказался лучшим. Уже в конце апреля я переехал в Москву и начал работать.
В Navio сначала занимался обучением из демонстраций в рамках модульного подхода, а затем — vision-language-action моделями. За эти 9 месяцев я очень многому научился и совершенно не жалею, что пошёл в автономное вождение.
Помимо основной работы, я писал статьи в DeepSchool (раз, два) и старался писать здесь. Было забавно, когда несколько человек на работе узнали меня именно по статьям в DeepSchool.
В новом году хочу писать здесь больше, а также попробовать себя в менторстве. Поэтому хочу спросить вас: о чём вам было бы интереснее читать? Например: обзоры статей, стартапов, рост в IT, больше личных постов — или что-то ещё. Буду очень благодарен, если напишете в комментариях.
Надеюсь, что 2025 год был для вас полон побед — маленьких и больших, а следующий станет ещё лучше🦾
Этот пост — небольшая рефлексия по итогам 2025 года и одновременно вопрос к вам о том, что вам было бы интересно читать в этом канале.
Для меня 2025 год выдался очень насыщенным. В январе я защитился в KU (запись защиты) Leuven и спустя почти 4 года стал PhD.
Сразу после этого мы с женой и нашей трёхмесячной дочкой переехали в Баку, Азербайджан — чтобы спокойно искать работу в США, UK и России. После стажировки в Amazon и окончания PhD я, честно говоря, ожидал больше приглашений на интервью, чем получил.
Прошёл 8
Хотя автономное вождение изначально не было для меня приоритетом, по совокупности интереса и компенсации этот вариант оказался лучшим. Уже в конце апреля я переехал в Москву и начал работать.
В Navio сначала занимался обучением из демонстраций в рамках модульного подхода, а затем — vision-language-action моделями. За эти 9 месяцев я очень многому научился и совершенно не жалею, что пошёл в автономное вождение.
Помимо основной работы, я писал статьи в DeepSchool (раз, два) и старался писать здесь. Было забавно, когда несколько человек на работе узнали меня именно по статьям в DeepSchool.
В новом году хочу писать здесь больше, а также попробовать себя в менторстве. Поэтому хочу спросить вас: о чём вам было бы интереснее читать? Например: обзоры статей, стартапов, рост в IT, больше личных постов — или что-то ещё. Буду очень благодарен, если напишете в комментариях.
👏11🎄8❤3
Год назад я собеседовался в Яндекс Humanoid, прошел через 7 раундов интервью и получил отказ. Рассказываю, как это было.
После предзащиты PhD я начал активно искать работу в робототехнике. Откликнулся на позицию контрол-инженера в Яндекс Humanoid, но в процессе собеседований фокус проекта менялся — под конец меня рассматривали уже на роль инженера по манипуляции.
Первое интервью было с лидом (на тот момент), где меня спрашивали всё про контрол: передаточные функции, модели пространства состояний, стабильность систем, MPC, LQR, наблюдатели. Для подготовки я использовал курс Automatic Control от Alberto Bemporad.
Второе интервью было на профильное программирование, в моем случае на контрол. Дали нестабильную систему с двумя состояниями, и попросили спроектировать контроллер и наблюдатель. Я реализовал LQR для стабилизации и LQE для оценки состояний. Использовал Python-библиотеку control и scipy.signal.
Третье интервью было на динамику робототехнических систем. Дали двойной маятник на платформе и попросили вывести уравнения динамики. Можно было использовать что угодно, даже симуляторы типа Mujoco. Но я решил вывести уравнения символьно, используя CasADi для вычисления производных Лагранжиана. Спрашивали про свойства матриц инерции и кориолисовых сил. Хорошим источником для подготовки к такому интервью — курс Underactuated Robotics от Russ Tedrake.
Четвертое интервью было про robotics system design. Попросили спроектировать автономную машину. Надо было рассказать, какие есть модули (карты, восприятие, планирование…) и как они между собой взаимодействуют. Интервьюер порой задавал очень низкоуровневые вопросы, типа — какие протоколы лучше использовать для обмена данными между модулями. Для подготовки сложно было найти какие-либо материалы. В отдельном посте расскажу, как бы я сейчас готовился к такому интервью.
Пятый и шестой раунды интервью были с директорами проекта. Там они много спрашивали про мой опыт и мои мысли о проекте, и о задачах, которые я могу взять на себя. Также подробно спрашивали, как бы я решал конкретные проблемы.
Седьмое интервью было с HR-бизнес-партнером. Про такую позицию я узнал впервые в жизни. Я понятия не имел, как готовиться к этому интервью. В итоге мы просто общались про мой опыт и мотивацию.
В конце мне неофициально дали отказ. Главная причина — отсутствие коммерческого опыта в ML. Было обидно, но потом я узнал, что часто после PhD требуют год или более опыта.
Рассказывайте в комментариях про свой опыт интервью в робототехнике.
После предзащиты PhD я начал активно искать работу в робототехнике. Откликнулся на позицию контрол-инженера в Яндекс Humanoid, но в процессе собеседований фокус проекта менялся — под конец меня рассматривали уже на роль инженера по манипуляции.
Первое интервью было с лидом (на тот момент), где меня спрашивали всё про контрол: передаточные функции, модели пространства состояний, стабильность систем, MPC, LQR, наблюдатели. Для подготовки я использовал курс Automatic Control от Alberto Bemporad.
Второе интервью было на профильное программирование, в моем случае на контрол. Дали нестабильную систему с двумя состояниями, и попросили спроектировать контроллер и наблюдатель. Я реализовал LQR для стабилизации и LQE для оценки состояний. Использовал Python-библиотеку control и scipy.signal.
Третье интервью было на динамику робототехнических систем. Дали двойной маятник на платформе и попросили вывести уравнения динамики. Можно было использовать что угодно, даже симуляторы типа Mujoco. Но я решил вывести уравнения символьно, используя CasADi для вычисления производных Лагранжиана. Спрашивали про свойства матриц инерции и кориолисовых сил. Хорошим источником для подготовки к такому интервью — курс Underactuated Robotics от Russ Tedrake.
Четвертое интервью было про robotics system design. Попросили спроектировать автономную машину. Надо было рассказать, какие есть модули (карты, восприятие, планирование…) и как они между собой взаимодействуют. Интервьюер порой задавал очень низкоуровневые вопросы, типа — какие протоколы лучше использовать для обмена данными между модулями. Для подготовки сложно было найти какие-либо материалы. В отдельном посте расскажу, как бы я сейчас готовился к такому интервью.
Пятый и шестой раунды интервью были с директорами проекта. Там они много спрашивали про мой опыт и мои мысли о проекте, и о задачах, которые я могу взять на себя. Также подробно спрашивали, как бы я решал конкретные проблемы.
Седьмое интервью было с HR-бизнес-партнером. Про такую позицию я узнал впервые в жизни. Я понятия не имел, как готовиться к этому интервью. В итоге мы просто общались про мой опыт и мотивацию.
В конце мне неофициально дали отказ. Главная причина — отсутствие коммерческого опыта в ML. Было обидно, но потом я узнал, что часто после PhD требуют год или более опыта.
Рассказывайте в комментариях про свой опыт интервью в робототехнике.
🔥2❤1