Data Engineers – Telegram
Data Engineers
9.49K subscribers
314 photos
79 files
299 links
Free Data Engineering Ebooks & Courses
Download Telegram
Python Detailed Roadmap 🚀

📌 1. Basics
Data Types & Variables
Operators & Expressions
Control Flow (if, loops)

📌 2. Functions & Modules
Defining Functions
Lambda Functions
Importing & Creating Modules

📌 3. File Handling
Reading & Writing Files
Working with CSV & JSON

📌 4. Object-Oriented Programming (OOP)
Classes & Objects
Inheritance & Polymorphism
Encapsulation

📌 5. Exception Handling
Try-Except Blocks
Custom Exceptions

📌 6. Advanced Python Concepts
List & Dictionary Comprehensions
Generators & Iterators
Decorators

📌 7. Essential Libraries
NumPy (Arrays & Computations)
Pandas (Data Analysis)
Matplotlib & Seaborn (Visualization)

📌 8. Web Development & APIs
Web Scraping (BeautifulSoup, Scrapy)
API Integration (Requests)
Flask & Django (Backend Development)

📌 9. Automation & Scripting
Automating Tasks with Python
Working with Selenium & PyAutoGUI

📌 10. Data Science & Machine Learning
Data Cleaning & Preprocessing
Scikit-Learn (ML Algorithms)
TensorFlow & PyTorch (Deep Learning)

📌 11. Projects
Build Real-World Applications
Showcase on GitHub

📌 12. Apply for Jobs
Strengthen Resume & Portfolio
Prepare for Technical Interviews

Like for more ❤️💪
3
Forwarded from Artificial Intelligence
𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝗼𝗻 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 – 𝗖𝗼𝗺𝗽𝗹𝗲𝘁𝗲 𝗣𝗹𝗮𝘆𝗹𝗶𝘀𝘁 𝗚𝘂𝗶𝗱𝗲😍

🎥 YouTube is the ultimate free classroom—and this is your Data Analytics syllabus in one post!👨‍💻

From Python and SQL to Power BI, Machine Learning, and Data Science, these carefully curated playlists will take you from complete beginner to job-ready✨️📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jzVggc

Enjoy Learning ✅️
ETL vs ELT – Explained Using Apple Juice analogy! 🍎🧃

We often hear about ETL and ELT in the data world — but how do they actually apply in tools like Excel and Power BI?

Let’s break it down with a simple and relatable analogy 👇

ETL (Extract → Transform → Load)

🧃 First you make the juice, then you deliver it

➡️ Apples → Juice → Truck

🔹 In Power BI / Excel:

You clean and transform the data in Power Query
Then load the final data into your report or sheet
💡 That’s ETL – transformation happens before loading



ELT (Extract → Load → Transform)

🍏 First you deliver the apples, and make juice later

➡️ Apples → Truck → Juice

🔹 In Power BI / Excel:

You load raw data into your model or sheet
Then transform it using DAX, formulas, or pivot tables
💡 That’s ELT – transformation happens after loading
3👍1👏1
𝗦𝗤𝗟 𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍

Looking to master SQL for Data Analytics or prep for your dream tech job? 💼

These 3 Free SQL resources will help you go from beginner to job-ready—without spending a single rupee! 📊

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3TcvfsA

💥 Start learning today and build the skills top companies want!✅️
1
𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

𝗦𝗤𝗟:- https://pdlink.in/3TcvfsA

𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:- https://pdlink.in/3Hfpwjc

𝗖𝗼𝗺𝗽𝘂𝘁𝗲𝗿 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:- https://pdlink.in/3ZyQpFd

𝗣𝘆𝘁𝗵𝗼𝗻 :- https://pdlink.in/3Hnx3wh

𝗗𝗲𝘃𝗢𝗽𝘀 :- https://pdlink.in/4jyxBwS

𝗪𝗲𝗯 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 :- https://pdlink.in/4jCAtJ5

Enroll for FREE & Get Certified 🎓
𝟱 𝗙𝗿𝗲𝗲 𝗠𝗜𝗧 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗬𝗼𝘂 𝗖𝗮𝗻 𝗧𝗮𝗸𝗲 𝗢𝗻𝗹𝗶𝗻𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍

🎓No MIT Admission? No Problem — Learn from MIT for Free!🔥

MIT is known for world-class education—but you don’t need to walk its halls to access its knowledge📚📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jBNtP2

These courses offer industry-relevant skills & completion certificates at no cost✅️
2
𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝗿𝗼𝗺𝗽𝘁 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱!😍

Want to communicate with AI like a pro? 🤖

Whether you’re a data analyst, AI developer, content creator, or student, this is the must-have skill of 2025✨️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/456lMuf

Save this now & unlock your AI potential!
𝟱 𝗙𝗥𝗘𝗘 𝗠𝗜𝗧 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗧𝗲𝗰𝗵, 𝗔𝗜 & 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲😍

Dreaming of an MIT education without the tuition fees? 🎯

These 5 FREE courses from MIT will help you master the fundamentals of programming, AI, machine learning, and data science—all from the comfort of your home! 🌐

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45cvR95

Your gateway to a smarter career✅️
Tips to become a Data Engineer 👇👇

1. Data Engineering Basics: At its core, it's about efficiently moving and reshaping data from one place/format to another.
2. Be Curious: The field is vast. Dive deep, ask questions, and always be in the mode of learning and experimenting.
3. Master Data: Understand the intricacies of data types, where they originate, and how they're structured.
4. Programming: Grasping a language is crucial. If you're unsure, start with Python – it's versatile and widely used in the industry.
5. SQL: A timeless tool for querying databases. Mastering SQL will empower you to work with data across various platforms.
6. Command Line: Familiarizing yourself with command line operations can save a lot of time, especially for quick and repetitive tasks.
7. Know Computers: A basic understanding of how computers communicate and process information can guide better data engineering decisions.
8. Personal Projects: Practical experience is invaluable. Start projects, learn from them, and showcase your work on platforms like GitHub.
9. APIs and JSON: Many modern data sources are API-based. Understanding how to extract and manipulate JSON data will be a daily task.
10. Tools Mastery: Get proficient with your primary tools, but stay updated with emerging technologies and platforms.
11. Data Storage Basics: Know the difference and use-cases for Databases, Data Lakes, and Data Warehouses. Understand the distinction between OLTP (online transaction processing) and OLAP (online analytical processing).
12. Cloud Platforms: The cloud is the future. AWS, Azure, and GCP offer free tiers to start experimenting.
13. Business Acumen: A data engineer who understands business metrics and their implications can offer more value.
14. Data Grain: Dive deep into datasets to understand their finest level of detail. It aids in more precise querying and analytics.
15. Data Formats: Recognizing main data formats (like JSON, XML, CSV, SQLite, Database) will help you navigate different datasets with ease.
1
Forwarded from Artificial Intelligence
𝟱 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗚𝗶𝘁𝗛𝘂𝗯 𝗥𝗲𝗽𝗼𝘀𝗶𝘁𝗼𝗿𝗶𝗲𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝘆𝘁𝗵𝗼𝗻 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲😍

Looking to Master Python for Free?✨️

These 5 GitHub repositories are all you need to level up — from beginner to advanced! 💻

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3FG7DcW

📌 Save this post & share it with a Python learner!
2
Forwarded from Artificial Intelligence
𝟲 𝗙𝗥𝗘𝗘 𝗢𝗻𝗹𝗶𝗻𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝗧𝗼 𝗖𝗵𝗮𝗻𝗴𝗲 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿 𝗜𝗻 𝟮𝟬𝟮𝟱 😍

🎯 Want to switch careers or upgrade your skills — without spending a single rupee?

Check out 6 handpicked, beginner-friendly courses in high-demand fields like Data Science, Web Development, Digital Marketing, Project Management, and more. 🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4e1I17a

💥 Start learning today and build the skills top companies want!✅️
1
ETL vs REVERSE ETL vs ELT
Forwarded from Artificial Intelligence
𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 𝘄𝗶𝘁𝗵 𝗛𝗮𝗿𝘃𝗮𝗿𝗱 𝗨𝗻𝗶𝘃𝗲𝗿𝘀𝗶𝘁𝘆😍

🎯 Want to break into Data Science without spending a single rupee?💰

Harvard University is offering a goldmine of free courses that make top-tier education accessible to anyone, anywhere👨‍💻✨️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3HxOgTW

These courses are designed by Ivy League experts and are trusted by thousands globally✅️
1
Amazon Interview Process for Data Scientist position

📍Round 1- Phone Screen round
This was a preliminary round to check my capability, projects to coding, Stats, ML, etc.

After clearing this round the technical Interview rounds started. There were 5-6 rounds (Multiple rounds in one day).

📍 𝗥𝗼𝘂𝗻𝗱 𝟮- 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗕𝗿𝗲𝗮𝗱𝘁𝗵:
In this round the interviewer tested my knowledge on different kinds of topics.

📍𝗥𝗼𝘂𝗻𝗱 𝟯- 𝗗𝗲𝗽𝘁𝗵 𝗥𝗼𝘂𝗻𝗱:
In this round the interviewers grilled deeper into 1-2 topics. I was asked questions around:
Standard ML tech, Linear Equation, Techniques, etc.

📍𝗥𝗼𝘂𝗻𝗱 𝟰- 𝗖𝗼𝗱𝗶𝗻𝗴 𝗥𝗼𝘂𝗻𝗱-
This was a Python coding round, which I cleared successfully.

📍𝗥𝗼𝘂𝗻𝗱 𝟱- This was 𝗛𝗶𝗿𝗶𝗻𝗴 𝗠𝗮𝗻𝗮𝗴𝗲𝗿 where my fitment for the team got assessed.

📍𝗟𝗮𝘀𝘁 𝗥𝗼𝘂𝗻𝗱- 𝗕𝗮𝗿 𝗥𝗮𝗶𝘀𝗲𝗿- Very important round, I was asked heavily around Leadership principles & Employee dignity questions.

So, here are my Tips if you’re targeting any Data Science role:
-> Never make up stuff & don’t lie in your Resume.
-> Projects thoroughly study.
-> Practice SQL, DSA, Coding problem on Leetcode/Hackerank.
-> Download data from Kaggle & build EDA (Data manipulation questions are asked)

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍
3
Forwarded from Artificial Intelligence
𝐈𝐁𝐌 𝐅𝐑𝐄𝐄 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐂𝐨𝐮𝐫𝐬𝐞𝐬😍

🚀 Dive into the world of Data Analytics with these 6 free courses by IBM!

Gain practical knowledge and stand out in your career with tools designed for real-world applications.

All courses come with expert guidance and are free to access!🎉

𝐋𝐢𝐧𝐤 👇:- 
 
https://bit.ly/4iXOmmb
 
Enroll For FREE & Get Certified 🎓
2
Machine Learning Algorithms every data scientist should know:

📌 Supervised Learning:

🔹 Regression
∟ Linear Regression
∟ Ridge & Lasso Regression
∟ Polynomial Regression

🔹 Classification
∟ Logistic Regression
∟ K-Nearest Neighbors (KNN)
∟ Decision Tree
∟ Random Forest
∟ Support Vector Machine (SVM)
∟ Naive Bayes
∟ Gradient Boosting (XGBoost, LightGBM, CatBoost)


📌 Unsupervised Learning:

🔹 Clustering
∟ K-Means
∟ Hierarchical Clustering
∟ DBSCAN

🔹 Dimensionality Reduction
∟ PCA (Principal Component Analysis)
∟ t-SNE
∟ LDA (Linear Discriminant Analysis)


📌 Reinforcement Learning (Basics):
∟ Q-Learning
∟ Deep Q Network (DQN)


📌 Ensemble Techniques:
∟ Bagging (Random Forest)
∟ Boosting (XGBoost, AdaBoost, Gradient Boosting)
∟ Stacking

Don’t forget to learn model evaluation metrics: accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, etc.

Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

React ❤️ for more free resources
2
Forwarded from Artificial Intelligence
𝟰 𝗛𝗶𝗴𝗵-𝗜𝗺𝗽𝗮𝗰𝘁 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗟𝗮𝘂𝗻𝗰𝗵 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱😍

These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4kC18XE

These courses help you gain hands-on experience — exactly what top MNCs look for!✅️
𝟭𝟬𝟬𝟬+ 𝗙𝗿𝗲𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗲𝗱 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗯𝘆 𝗜𝗻𝗳𝗼𝘀𝘆𝘀 – 𝗟𝗲𝗮𝗿𝗻, 𝗚𝗿𝗼𝘄, 𝗦𝘂𝗰𝗰𝗲𝗲𝗱!😍

🚀 Looking to upgrade your skills without spending a rupee?💰

Here’s your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more — all absolutely FREE on Infosys Springboard!🔥

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/43UcmQ7

Save this blog, sign up, and start your upskilling journey today!✅️
Planning for Data Science or Data Engineering Interview.

Focus on SQL & Python first. Here are some important questions which you should know.

𝐈𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐭 𝐒𝐐𝐋 𝐪𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐬

1- Find out nth Order/Salary from the tables.
2- Find the no of output records in each join from given Table 1 & Table 2
3- YOY,MOM Growth related questions.
4- Find out Employee ,Manager Hierarchy (Self join related question) or
Employees who are earning more than managers.
5- RANK,DENSERANK related questions
6- Some row level scanning medium to complex questions using CTE or recursive CTE, like (Missing no /Missing Item from the list etc.)
7- No of matches played by every team or Source to Destination flight combination using CROSS JOIN.
8-Use window functions to perform advanced analytical tasks, such as calculating moving averages or detecting outliers.
9- Implement logic to handle hierarchical data, such as finding all descendants of a given node in a tree structure.
10-Identify and remove duplicate records from a table.

𝐈𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐭 𝐏𝐲𝐭𝐡𝐨𝐧 𝐪𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐬

1- Reversing a String using an Extended Slicing techniques.
2- Count Vowels from Given words .
3- Find the highest occurrences of each word from string and sort them in order.
4- Remove Duplicates from List.
5-Sort a List without using Sort keyword.
6-Find the pair of numbers in this list whose sum is n no.
7-Find the max and min no in the list without using inbuilt functions.
8-Calculate the Intersection of Two Lists without using Built-in Functions
9-Write Python code to make API requests to a public API (e.g., weather API) and process the JSON response.
10-Implement a function to fetch data from a database table, perform data manipulation, and update the database.

Join for more: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING 👍👍
2
𝗙𝗿𝗲𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲: 𝗧𝗵𝗲 𝗕𝗲𝘀𝘁 𝗦𝘁𝗮𝗿𝘁𝗶𝗻𝗴 𝗣𝗼𝗶𝗻𝘁 𝗳𝗼𝗿 𝗧𝗲𝗰𝗵 & 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀😍

🚀 Want to break into tech or data analytics but don’t know how to start?📌✨️

Python is the #1 most in-demand programming language, and Scaler’s free Python for Beginners course is a game-changer for absolute beginners📊✔️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45TroYX

No coding background needed!✅️
1
🧠 Technologies for Data Analysts!

📊 Data Manipulation & Analysis

▪️ Excel – Spreadsheet Data Analysis & Visualization
▪️ SQL – Structured Query Language for Data Extraction
▪️ Pandas (Python) – Data Analysis with DataFrames
▪️ NumPy (Python) – Numerical Computing for Large Datasets
▪️ Google Sheets – Online Collaboration for Data Analysis

📈 Data Visualization

▪️ Power BI – Business Intelligence & Dashboarding
▪️ Tableau – Interactive Data Visualization
▪️ Matplotlib (Python) – Plotting Graphs & Charts
▪️ Seaborn (Python) – Statistical Data Visualization
▪️ Google Data Studio – Free, Web-Based Visualization Tool

🔄 ETL (Extract, Transform, Load)

▪️ SQL Server Integration Services (SSIS) – Data Integration & ETL
▪️ Apache NiFi – Automating Data Flows
▪️ Talend – Data Integration for Cloud & On-premises

🧹 Data Cleaning & Preparation

▪️ OpenRefine – Clean & Transform Messy Data
▪️ Pandas Profiling (Python) – Data Profiling & Preprocessing
▪️ DataWrangler – Data Transformation Tool

📦 Data Storage & Databases

▪️ SQL – Relational Databases (MySQL, PostgreSQL, MS SQL)
▪️ NoSQL (MongoDB) – Flexible, Schema-less Data Storage
▪️ Google BigQuery – Scalable Cloud Data Warehousing
▪️ Redshift – Amazon’s Cloud Data Warehouse

⚙️ Data Automation

▪️ Alteryx – Data Blending & Advanced Analytics
▪️ Knime – Data Analytics & Reporting Automation
▪️ Zapier – Connect & Automate Data Workflows

📊 Advanced Analytics & Statistical Tools

▪️ R – Statistical Computing & Analysis
▪️ Python (SciPy, Statsmodels) – Statistical Modeling & Hypothesis Testing
▪️ SPSS – Statistical Software for Data Analysis
▪️ SAS – Advanced Analytics & Predictive Modeling

🌐 Collaboration & Reporting

▪️ Power BI Service – Online Sharing & Collaboration for Dashboards
▪️ Tableau Online – Cloud-Based Visualization & Sharing
▪️ Google Analytics – Web Traffic Data Insights
▪️ Trello / JIRA – Project & Task Management for Data Projects
Data-Driven Decisions with the Right Tools!

React ❤️ for more
1