SQL Programming Resources – Telegram
SQL Programming Resources
75.8K subscribers
507 photos
13 files
448 links
Find top SQL resources from global universities, cool projects, and learning materials for data analytics.

Admin: @coderfun

Useful links: heylink.me/DataAnalytics

Promotions: @love_data
Download Telegram
𝗧𝗵𝗲 𝟯 𝗦𝗸𝗶𝗹𝗹𝘀 𝗧𝗵𝗮𝘁 𝗪𝗶𝗹𝗹 𝗠𝗮𝗸𝗲 𝗬𝗼𝘂 𝗨𝗻𝘀𝘁𝗼𝗽𝗽𝗮𝗯𝗹𝗲 𝗶𝗻 𝟮𝟬𝟮𝟲😍

Start learning for FREE and earn a certification that adds real value to your resume.

𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴:- https://pdlink.in/3LoutZd

𝗖𝘆𝗯𝗲𝗿 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆:- https://pdlink.in/3N9VOyW

𝗕𝗶𝗴 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀:- https://pdlink.in/497MMLw

👉 Enroll today & future-proof your career!
Basic SQL Queries Interview Questions With Answers 🖥️

1. What does SELECT do
• SELECT fetches data from a table
• You choose columns you want to see
Example: SELECT name, salary FROM employees;

2. What does FROM do
• FROM tells SQL where data lives
• It specifies the table name
Example: SELECT * FROM customers;

3. What is WHERE clause
• WHERE filters rows
• It runs before aggregation
Example: SELECT * FROM orders WHERE status = 'Delivered';

4. Difference between WHERE and HAVING
• WHERE filters rows before GROUP BY
• HAVING filters groups after aggregation
Example: WHERE filters orders, HAVING filters total_sales

5. How do you sort data
• Use ORDER BY
• Default order is ASC
Example: SELECT * FROM employees ORDER BY salary DESC;

6. How do you sort by multiple columns
• SQL sorts left to right
Example: SELECT * FROM students ORDER BY class ASC, marks DESC;

7. What is LIMIT
• LIMIT restricts number of rows returned
• Useful for top N queries
Example: SELECT * FROM products LIMIT 5;

8. What is OFFSET
• OFFSET skips rows
• Used with LIMIT for pagination
Example: SELECT * FROM products LIMIT 5 OFFSET 10;

9. How do you filter on multiple conditions
• Use AND, OR
Example: SELECT * FROM users WHERE city = 'Delhi' AND age > 25;

10. Difference between AND and OR
• AND needs all conditions true
• OR needs one condition true

Quick interview advice
• Always say execution order: FROM → WHERE → SELECT → ORDER BY → LIMIT
• Write clean examples
• Speak logic first, syntax next¹

Double Tap ❤️ For More
5
SQL Joins Interview Questions With Answers 🖥️

1. What is a JOIN in SQL. Explain with an example. 
• JOIN combines data from multiple tables
• Tables connect using a common column
• Usually primary key to foreign key
Example tables 
Customers 
customer_id, name 
Orders 
order_id, customer_id, amount 
Query 
SELECT c.name, o.amount 
FROM customers c 
INNER JOIN orders o 
ON c.customer_id = o.customer_id; 
Explanation 
• SQL matches customer_id in both tables
• Output shows only related customer order data

2. What is INNER JOIN. When do you use it. 
• INNER JOIN returns only matching rows
• Rows without match are removed
Example 
Find customers who placed orders 
Query 
SELECT c.customer_id, c.name 
FROM customers c 
INNER JOIN orders o 
ON c.customer_id = o.customer_id; 
Logic 
• Customers without orders are excluded
• Only matched records appear

3. What is LEFT JOIN. Explain with use case. 
• LEFT JOIN returns all rows from left table
• Matching rows from right table
• Non matches show NULL
Example 
Find all customers and their orders 
Query 
SELECT c.name, o.order_id 
FROM customers c 
LEFT JOIN orders o 
ON c.customer_id = o.customer_id; 
Logic 
• Customers without orders still appear
• order_id becomes NULL

4. Difference between INNER JOIN and LEFT JOIN. 
• INNER JOIN removes non matching rows
• LEFT JOIN keeps all left table rows
• LEFT JOIN shows NULL for missing matches
Interview tip 
Explain using one missing record example 

5. What is RIGHT JOIN. 
• Returns all rows from right table
• Matching rows from left table
• Rarely used in real projects
Example 
SELECT c.name, o.order_id 
FROM customers c 
RIGHT JOIN orders o 
ON c.customer_id = o.customer_id; 

6. What is FULL OUTER JOIN. 
• Returns all rows from both tables
• Matches where possible
• Non matches show NULL
Example 
SELECT c.name, o.order_id 
FROM customers c 
FULL OUTER JOIN orders o 
ON c.customer_id = o.customer_id; 
Use case 
• Data reconciliation
• Comparing two datasets

7. How do you find records present in one table but not in another. 
Find customers with no orders 
Query 
SELECT c.customer_id, c.name 
FROM customers c 
LEFT JOIN orders o 
ON c.customer_id = o.customer_id 
WHERE o.order_id IS NULL; 
Logic 
• LEFT JOIN keeps all customers
• WHERE filters non matched rows

8. Explain JOIN with WHERE clause. Common mistake. 
• WHERE runs after JOIN
• Wrong WHERE condition breaks LEFT JOIN
Wrong 
LEFT JOIN orders 
WHERE orders.amount > 1000 
Correct 
LEFT JOIN orders 
ON (link unavailable) = (link unavailable) 
AND orders.amount > 1000 

9. How do you join more than two tables. 
• JOIN step by step
• Each JOIN needs condition
Example 
SELECT c.name, o.order_id, p.product_name 
FROM customers c 
JOIN orders o 
ON c.customer_id = o.customer_id 
JOIN products p 
ON o.product_id = p.product_id; 

10. SQL execution order for JOIN queries. 
• FROM
• JOIN
• WHERE
• GROUP BY
• HAVING
• SELECT
• ORDER BY

Interview advice 
• Always explain logic first
• Draw table flow in words
• Then write query

Double Tap ♥️ For More
9
SQL GROUP BY and AGGREGATION Interview Questions 🎓

1. What is GROUP BY in SQL.
• GROUP BY groups rows with same values
• Used with aggregate functions
• One row per group in output

Example

Find total salary per department

FROM employees
GROUP BY department;

Logic
• Rows grouped by department
• SUM runs on each group

2. Why do we use aggregate functions.
• To summarize data
• To calculate totals, averages, counts

Common functions
• COUNT
• SUM
• AVG
• MIN
• MAX

3. What happens if you use GROUP BY without aggregation.
• Output shows unique combinations of grouped columns

Example
FROM employees
GROUP BY department;

Logic
• Acts like DISTINCT

4. Difference between WHERE and HAVING.
• WHERE filters rows
• HAVING filters groups
• WHERE runs before GROUP BY
• HAVING runs after GROUP BY

Example
Find departments with total salary above 5,00,000

FROM employees
GROUP BY department
HAVING SUM(salary) > 500000;


5. Can you use WHERE with GROUP BY.
• Yes
• WHERE filters raw data before grouping

Example

Ignore inactive employees

FROM employees
WHERE status = 'Active'
GROUP BY department;


6. Common GROUP BY interview error.

Why does this query fail
FROM employees
GROUP BY department;

Answer
• Non aggregated column must be in GROUP BY
• name is missing

Correct query
FROM employees
GROUP BY department;


7. What's the difference between COUNT(*) COUNT(column)?
• COUNT(*) counts all rows
• COUNT(column) skips NULL values

Example
SELECT COUNT(delivery_date) FROM orders;


8. Find total orders per customer.
FROM orders
GROUP BY customer_id;

Logic
• One row per customer
• COUNT runs per customer group

9. Find customers with more than 5 orders.
FROM orders
GROUP BY customer_id
HAVING COUNT(order_id) > 5;

Logic
• GROUP first
• Filter groups using HAVING

10. Execution order for GROUP BY queries.
• FROM
• WHERE
• GROUP BY
• HAVING
• SELECT
• ORDER BY

Interview advice
• Say execution order clearly
• Explain using one simple example
• Avoid mixing WHERE and HAVING logic

Double Tap ♥️ For More
7
𝗙𝘂𝗹𝗹𝘀𝘁𝗮𝗰𝗸 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 𝗵𝗶𝗴𝗵-𝗱𝗲𝗺𝗮𝗻𝗱 𝘀𝗸𝗶𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟲😍

Join FREE Masterclass In Hyderabad/Pune/Noida Cities 

𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀:- 
- 500+ Hiring Partners 
- 60+ Hiring Drives
- 100% Placement Assistance

𝗕𝗼𝗼𝗸 𝗮 𝗙𝗥𝗘𝗘 𝗱𝗲𝗺𝗼👇:-

🔹 Hyderabad :- https://pdlink.in/4cJUWtx

🔹 Pune :-  https://pdlink.in/3YA32zi

🔹 Noida :-  https://linkpd.in/NoidaFSD

Hurry Up 🏃‍♂️! Limited seats are available
3
SQL Window Functions Interview Questions with Answers ✍️

1. What are window functions in SQL?
• Window functions perform calculations across related rows
• They do not reduce rows
• Each row keeps its detail
Key syntax: OVER (PARTITION BY, ORDER BY)

2. Difference between GROUP BY and window functions
• GROUP BY collapses rows
• Window functions keep all rows
• Window functions add calculated columns

3. What is ROW_NUMBER?
• Assigns unique sequential number
• No ties allowed

Example: Rank employees by salary

SELECT name, salary, ROW_NUMBER() OVER (ORDER BY salary DESC) AS rn
FROM employees;

4. Difference between ROW_NUMBER, RANK, and DENSE_RANK
• ROW_NUMBER gives unique numbers
• RANK skips numbers on ties
• DENSE_RANK does not skip

Example salaries: 100, 100, 90

ROW_NUMBER → 1, 2, 3
RANK → 1, 1, 3
DENSE_RANK → 1, 1, 2

5. What is PARTITION BY?
• PARTITION BY splits data into groups
• Window function runs inside each group

Example: Rank employees per department

SELECT department, name, salary,
RANK() OVER (PARTITION BY department ORDER BY salary DESC) AS dept_rank
FROM employees;

6. Find top 2 salaries per department

SELECT * FROM (
SELECT department, name, salary,
DENSE_RANK() OVER (PARTITION BY department ORDER BY salary DESC) AS rnk
FROM employees
) t
WHERE rnk <= 2;

7. What is LAG?
• Accesses previous row value
• Used for comparisons

Example: Day over day sales

SELECT date, sales, LAG(sales) OVER (ORDER BY date) AS prev_day_sales
FROM daily_sales;

8. What is LEAD?
• Accesses next row value

Example: Compare today with next day

SELECT date, sales, LEAD(sales) OVER (ORDER BY date) AS next_day_sales
FROM daily_sales;

9. Calculate day over day growth
SELECT date, sales - LAG(sales) OVER (ORDER BY date) AS growth
FROM daily_sales;

10. Common window function interview mistakes
• Forgetting ORDER BY inside OVER
• Using WHERE instead of subquery to filter ranks
• Mixing GROUP BY with window logic incorrectly

Execution order: FROM → WHERE → GROUP BY → HAVING → SELECT → WINDOW → ORDER BY

Double Tap ♥️ For More
4👍2
💡 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗶𝘀 𝗼𝗻𝗲 𝗼𝗳 𝘁𝗵𝗲 𝗺𝗼𝘀𝘁 𝗶𝗻-𝗱𝗲𝗺𝗮𝗻𝗱 𝘀𝗸𝗶𝗹𝗹𝘀 𝗶𝗻 𝟮𝟬𝟮𝟲!

Start learning ML for FREE and boost your resume with a certification 🏆

📊 Hands-on learning
🎓 Certificate included
🚀 Career-ready skills

🔗 𝗘𝗻𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘 👇:-

https://pdlink.in/4bhetTu

👉 Don’t miss this opportunity
1
📈 Want to Excel at Data Analytics? Master These Essential Skills! ☑️

Core Concepts:
• Statistics & Probability – Understand distributions, hypothesis testing
• Excel – Pivot tables, formulas, dashboards

Programming:
• Python – NumPy, Pandas, Matplotlib, Seaborn
• R – Data analysis & visualization
• SQL – Joins, filtering, aggregation

Data Cleaning & Wrangling:
• Handle missing values, duplicates
• Normalize and transform data

Visualization:
• Power BI, Tableau – Dashboards
• Plotly, Seaborn – Python visualizations
• Data Storytelling – Present insights clearly

Advanced Analytics:
• Regression, Classification, Clustering
• Time Series Forecasting
• A/B Testing & Hypothesis Testing

ETL & Automation:
• Web Scraping – BeautifulSoup, Scrapy
• APIs – Fetch and process real-world data
• Build ETL Pipelines

Tools & Deployment:
• Jupyter Notebook / Colab
• Git & GitHub
• Cloud Platforms – AWS, GCP, Azure
• Google BigQuery, Snowflake

Hope it helps :)
3
SQL CTEs and Subqueries Interview Questions with Answers 🖥️

1. Find employees who earn more than the average salary.

Table: employees (employee_id, name, salary)
SELECT name, salary 
FROM employees
WHERE salary > (
SELECT AVG(salary)
FROM employees
);

Logic: Inner query calculates average salary. Outer query filters employees above average.

2. Find employees who earn the highest salary in each department.

Table: employees (employee_id, name, department, salary)
SELECT name, department, salary 
FROM employees e
WHERE salary = (
SELECT MAX(salary)
FROM employees
WHERE department = e.department
);

Logic: Subquery runs per department. Matches max salary inside same department.

3. Find departments where average salary is greater than 60,000.
SELECT department 
FROM (
SELECT department, AVG(salary) AS avg_salary
FROM employees
GROUP BY department
) t
WHERE avg_salary > 60000;

Logic: Inner query calculates department average. Outer query filters required departments.

4. Same query using CTE.

WITH dept_avg AS ( 
SELECT department, AVG(salary) AS avg_salary
FROM employees
GROUP BY department
)
SELECT department
FROM dept_avg
WHERE avg_salary > 60000;

Logic: CTE stores aggregated result. Final query reads from CTE.

5. Find customers who placed more orders than the average number of orders.

Tables: customers (customer_id, name), orders (order_id, customer_id)

SELECT customer_id 
FROM orders
GROUP BY customer_id
HAVING COUNT(order_id) > (
SELECT AVG(order_count)
FROM (
SELECT COUNT(order_id) AS order_count
FROM orders
GROUP BY customer_id
) x
);

Logic: Inner query calculates orders per customer. Next level gets average. HAVING filters customers above average.

6. Find top-selling product by total sales amount.
Table: sales (product_id, amount)

SELECT product_id
FROM sales
GROUP BY product_id
HAVING SUM(amount) = (
SELECT MAX(total_sales)
FROM (
SELECT SUM(amount) AS total_sales
FROM sales
GROUP BY product_id
) t
);

Logic: Inner query calculates sales per product. Outer query finds max and matches it.

7. Rewrite using CTE.

WITH product_sales AS (
SELECT product_id, SUM(amount) AS total_sales
FROM sales
GROUP BY product_id
)
SELECT product_id
FROM product_sales
WHERE total_sales = (
SELECT MAX(total_sales)
FROM product_sales
);

Logic: CTE avoids repeating aggregation. Cleaner and readable.

8. Find employees whose salary is greater than their department average.

WITH dept_avg AS (
SELECT department, AVG(salary) AS avg_salary
FROM employees
GROUP BY department
)
SELECT e.name, e.salary
FROM employees e
JOIN dept_avg d ON e.department = d.department
WHERE e.salary > d.avg_salary;

Logic: First compute department averages. Join back to employees. Filter higher earners.

Double Tap ♥️ For More
2
SQL CASE Statements and Data Cleaning Interview Questions with Answers 📊

1. Classify customers based on total spend
Table: orders (order_id, customer_id, amount)

Requirement:
- Gold if total_spend >= 100000
- Silver if total_spend between 50000 and 99999
- Bronze otherwise

Solution:
SELECT customer_id,
CASE
WHEN SUM(amount) >= 100000 THEN 'Gold'
WHEN SUM(amount) >= 50000 THEN 'Silver'
ELSE 'Bronze'
END AS customer_category
FROM orders
GROUP BY customer_id;

2. Create an age group column for users
Table: users (user_id, age)

Requirement:
- Below 18
- 18 to 30
- Above 30

Solution:
SELECT user_id,
CASE
WHEN age < 18 THEN 'Below 18'
WHEN age BETWEEN 18 AND 30 THEN '18-30'
ELSE 'Above 30'
END AS age_group
FROM users;

3. Replace NULL salary with 0
Table: employees (employee_id, salary)

Solution:
SELECT employee_id, COALESCE(salary, 0) AS salary
FROM employees;

4. Count employees with missing email IDs
Table: employees (employee_id, email)

Solution:
SELECT COUNT(*) AS missing_email_count
FROM employees
WHERE email IS NULL;

5. Remove extra spaces from customer names
Table: customers (customer_id, name)

Solution:
SELECT customer_id, TRIM(name) AS clean_name
FROM customers;

6. Extract first 3 characters from product code
Table: products (product_code)

Solution:
SELECT product_code, SUBSTRING(product_code, 1, 3) AS product_prefix
FROM products;

7. Standardize date format
Table: orders (order_date)

Requirement: Convert to YYYY-MM-DD

Solution:
SELECT CAST(order_date AS DATE) AS clean_order_date
FROM orders;

8. Mark inactive users based on last login
Table: users (user_id, last_login_date)

Requirement: Inactive if last login before 2023-01-01

Solution:
SELECT user_id,
CASE
WHEN last_login_date < '2023-01-01' THEN 'Inactive'
ELSE 'Active'
END AS user_status
FROM users;

9. Handle empty string as NULL
Table: customers (phone_number)

Solution:
SELECT NULLIF(phone_number, '') AS phone_number
FROM customers;

10. Create a clean reporting column using multiple rules
Table: transactions (amount)

Requirement:
- High if amount >= 10000
- Medium if 5000 to 9999
- Low otherwise

Solution:
SELECT amount,
CASE
WHEN amount >= 10000 THEN 'High'
WHEN amount >= 5000 THEN 'Medium'
ELSE 'Low'
END AS transaction_type
FROM transactions;

Double Tap ♥️ For More
7
𝗙𝗥𝗘𝗘 𝗖𝗮𝗿𝗲𝗲𝗿 𝗖𝗮𝗿𝗻𝗶𝘃𝗮𝗹 𝗯𝘆 𝗛𝗖𝗟 𝗚𝗨𝗩𝗜😍

Prove your skills in an online hackathon, clear tech interviews, and get hired faster

Highlightes:- 

- 21+ Hiring Companies & 100+ Open Positions to Grab
- Get hired for roles in AI, Full Stack, & more

Experience the biggest online job fair with Career Carnival by HCL GUVI

𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:- 

https://pdlink.in/4bQP5Ee

Hurry Up🏃‍♂️.....Limited Slots Available
1
Real-world SQL Scenario based Interview Questions with Answers

Question 1: Calculate conversion rate for a sales funnel

Tables: events (user_id, event_name, event_date)

Events: signup → product_view → purchase

Requirement: Count users at each stage, compute conversion from signup to purchase

WITH stages AS (
SELECT user_id,
MAX(CASE WHEN event_name = 'signup' THEN 1 ELSE 0 END) AS signup,
MAX(CASE WHEN event_name = 'product_view' THEN 1 ELSE 0 END) AS view,
MAX(CASE WHEN event_name = 'purchase' THEN 1 ELSE 0 END) AS purchase
FROM events
GROUP BY user_id
)

SELECT
SUM(signup) AS signups,
SUM(purchase) AS purchases,
ROUND(100.0 * SUM(purchase) / SUM(signup), 2) AS conversion_rate
FROM stages;


Question 2: Build a monthly retention cohort

Tables: users (user_id, signup_date), logins (user_id, login_date)

Requirement: Cohort by signup month, show retained users by login month

WITH cohort AS (
SELECT user_id, DATE_TRUNC('month', signup_date) AS cohort_month
FROM users
),
activity AS (
SELECT l.user_id, DATE_TRUNC('month', l.login_date) AS activity_month
FROM logins l
)

SELECT
c.cohort_month,
a.activity_month,
COUNT(DISTINCT a.user_id) AS active_users
FROM cohort c
JOIN activity a ON c.user_id = a.user_id
GROUP BY c.cohort_month, a.activity_month
ORDER BY c.cohort_month, a.activity_month;


Question 3: Calculate monthly churn rate

Tables: subnoscriptions (user_id, start_date, end_date)

Requirement: Churned users per month, churn rate = churned / active users

WITH active_users AS (
SELECT DATE_TRUNC('month', start_date) AS month, COUNT(DISTINCT user_id) AS active_users
FROM subnoscriptions
GROUP BY DATE_TRUNC('month', start_date)
),
churned_users AS (
SELECT DATE_TRUNC('month', end_date) AS month, COUNT(DISTINCT user_id) AS churned_users
FROM subnoscriptions
WHERE end_date IS NOT NULL
GROUP BY DATE_TRUNC('month', end_date)
)
SELECT
a.month,
a.active_users,
COALESCE(c.churned_users, 0) AS churned_users,
ROUND(100.0 * COALESCE(c.churned_users, 0) / a.active_users, 2) AS churn_rate
FROM active_users a
LEFT JOIN churned_users c ON a.month = c.month
ORDER BY a.month;


Question 4: Calculate Daily Active Users

Table: user_activity (user_id, activity_date)

Requirement: DAU per day

SELECT activity_date, COUNT(DISTINCT user_id) AS dau
FROM user_activity
GROUP BY activity_date
ORDER BY activity_date;


Question 5: Revenue by marketing channel

Tables: orders (order_id, user_id, amount, order_date), users (user_id, channel)

Requirement: Total revenue per channel, monthly breakdown

SELECT 
DATE_TRUNC('month', o.order_date) AS month,
u.channel,
SUM(o.amount) AS revenue
FROM orders o
JOIN users u ON o.user_id = u.user_id
GROUP BY DATE_TRUNC('month', o.order_date), u.channel
ORDER BY month, revenue DESC;


Question 6: Identify returning customers

Table: orders (order_id, customer_id, order_date)

Requirement: Customers with more than one order

SELECT customer_id
FROM orders
GROUP BY customer_id
HAVING COUNT(order_id) > 1;


Question 7: Top product by revenue per month

Table: sales (product_id, amount, sale_date)

WITH monthly_sales AS (
SELECT
DATE_TRUNC('month', sale_date) AS month,
product_id,
SUM(amount) AS revenue
FROM sales
GROUP BY DATE_TRUNC('month', sale_date), product_id
),
ranked AS (
SELECT *, RANK() OVER (PARTITION BY month ORDER BY revenue DESC) AS rnk
FROM monthly_sales
)

SELECT month, product_id, revenue
FROM ranked
WHERE rnk = 1;


Double Tap ♥️ For More
6
𝗧𝗼𝗽 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝗧𝗼 𝗚𝗲𝘁 𝗛𝗶𝗴𝗵 𝗣𝗮𝘆𝗶𝗻𝗴 𝗝𝗼𝗯 𝗜𝗻 𝟮𝟬𝟮𝟲😍

Opportunities With 500+ Hiring Partners 

𝗙𝘂𝗹𝗹𝘀𝘁𝗮𝗰𝗸:- https://pdlink.in/4hO7rWY

𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀:- https://pdlink.in/4fdWxJB

📈 Start learning today, build job-ready skills, and get placed in leading tech companies.
2
Complete SQL Roadmap in 2 Months

Month 1: Strong SQL Foundations
Week 1: Database and query basics
• What SQL does in analytics and business
• Tables, rows, columns
• Primary key and foreign key
• SELECT, DISTINCT
• WHERE with AND, OR, IN, BETWEEN
Outcome: You understand data structure and fetch filtered data.

Week 2: Sorting and aggregation
• ORDER BY and LIMIT
• COUNT, SUM, AVG, MIN, MAX
• GROUP BY
• HAVING vs WHERE
• Use case like total sales per product
Outcome: You summarize data clearly.

Week 3: Joins fundamentals
• INNER JOIN
• LEFT JOIN
• RIGHT JOIN
• Join conditions
• Handling NULL values
Outcome: You combine multiple tables correctly.

Week 4: Joins practice and cleanup
• Duplicate rows after joins
• SELF JOIN with examples
• Data cleaning using SQL
• Daily join-based questions
Outcome: You stop making join mistakes.

Month 2: Analytics-Level SQL
Week 5: Subqueries and CTEs
• Subqueries in WHERE and SELECT
• Correlated subqueries
• Common Table Expressions
• Readability and reuse
Outcome: You write structured queries.

Week 6: Window functions
• ROW_NUMBER, RANK, DENSE_RANK
• PARTITION BY and ORDER BY
• Running totals
• Top N per category problems
Outcome: You solve advanced analytics queries.

Week 7: Date and string analysis
• Date functions for daily, monthly analysis
• Year-over-year and month-over-month logic
• String functions for text cleanup
Outcome: You handle real business datasets.

Week 8: Project and interview prep
• Build a SQL project using sales or HR data
• Write KPI queries
• Explain query logic step by step
• Daily interview questions practice
Outcome: You are SQL interview ready.

Practice platforms
• LeetCode SQL
• HackerRank SQL
• Kaggle datasets

Double Tap ♥️ For Detailed Explanation of Each Topic
9
𝗧𝗼𝗽 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝗢𝗳𝗳𝗲𝗿𝗲𝗱 𝗕𝘆 𝗜𝗜𝗧 𝗥𝗼𝗼𝗿𝗸𝗲𝗲 & 𝗜𝗜𝗠 𝗠𝘂𝗺𝗯𝗮𝗶😍

Placement Assistance With 5000+ Companies 

Deadline: 25th January 2026

𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 & 𝗔𝗜 :- https://pdlink.in/49UZfkX

𝗦𝗼𝗳𝘁𝘄𝗮𝗿𝗲 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴:- https://pdlink.in/4pYWCEK

𝗗𝗶𝗴𝗶𝘁𝗮𝗹 𝗠𝗮𝗿𝗸𝗲𝘁𝗶𝗻𝗴 & 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :- https://pdlink.in/4tcUPia

Hurry..Up Only Limited Seats Available
1
Glad to see the amazing response on SQL roadmap. ❤️

Today, let's start with the first topic of SQL roadmap:

Introduction to SQL

SQL is the language you use to ask questions from data stored in databases. Companies store all important data in databases. Sales. Users. Payments. Inventory. When a manager asks a question, SQL pulls the answer.

What a database is
A database is an organized storage system for data. Think of it as a digital cupboard where each drawer holds related data. Each drawer is called a table.

What a table is
A table looks like an Excel sheet. It has rows and columns. Each table stores one type of data.

Example table: customers
- Columns
- customer_id
- name
- email
- city
- signup_date
- Rows
- Each row represents one customer
- One row equals one real-world record

How rows and columns work together
- Columns define what kind of data you store
- Rows hold actual values
- All rows follow the same column structure

Example row
- customer_id: 101
- name: Rahul
- email: rahul@gmail.com
- city: Pune
- signup_date: 2024-03-10

Why structure matters
- Clean structure makes data reliable
- Easy to filter, count, and analyze
- Required for accurate reporting

How SQL interacts with tables
- SQL reads data from tables
- SQL filters rows
- SQL selects columns
- SQL summarizes results

Simple SQL example
You ask the database to show names and cities of customers.
SELECT name, city FROM customers;


What happens behind the scenes
- Database scans the customers table
- Picks name and city columns
- Returns matching rows

Where you will use this daily
- Pull user lists
- Check sales numbers
- Validate data issues

Double Tap ♥️ For More
9
Glad to see the amazing response on SQL roadmap. ❤️

Today, let's move to the next topic of SQL roadmap:

Database Basics: Primary Key and Foreign Key

Why Keys Exist
Databases store millions of rows. Keys help identify and connect data correctly. Without keys, data breaks fast.

Primary Key
- A primary key uniquely identifies each row in a table
- No two rows share the same primary key
- It never stays empty

Example Table: customers
- Columns: customer_id, name, email, city
- Primary key: customer_id

Why Primary Key Matters
- Prevents duplicate records
- Helps find a row fast
- Keeps data consistent

Foreign Key
- A foreign key links one table to another
- It creates relationships between tables

Example Table: orders
- Columns: order_id, customer_id, order_date, amount
- Foreign key: customer_id

Relationship Explained
- customers.customer_id is primary key
- orders.customer_id is foreign key
- One customer has many orders

Why Foreign Keys Matter
- Enable joins
- Prevent orphan records
- Maintain data integrity

Simple Join Idea
SQL matches customer_id in both tables. This gives customer name with order amount.

Where Beginners Go Wrong
- Using names instead of IDs
- Allowing duplicate primary keys
- Ignoring missing foreign key values

Checkpoint
- You understand primary keys
- You understand foreign keys
- You know how tables connect

Double Tap ♥️ For More
4
𝗜𝗻𝗱𝗶𝗮’𝘀 𝗕𝗶𝗴𝗴𝗲𝘀𝘁 𝗛𝗮𝗰𝗸𝗮𝘁𝗵𝗼𝗻 | 𝗔𝗜 𝗜𝗺𝗽𝗮𝗰𝘁 𝗕𝘂𝗶𝗹𝗱𝗮𝘁𝗵𝗼𝗻😍

Participate in the national AI hackathon under the India AI Impact Summit 2026

Submission deadline: 5th February 2026

Grand Finale: 16th February 2026, New Delhi

𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗡𝗼𝘄👇:- 

https://pdlink.in/4qQfAOM

a flagship initiative of the Government of India 🇮🇳
Today, let's move to the next topic of SQL Roadmap:

Basic SQL Queries: SELECT, WHERE, Filtering 🖥️

What SELECT Does
- SELECT chooses columns
- You decide what data you want to see
- Database returns only those columns

Example Table: customers
customer_id | name | city | signup_date
101 | Rahul | Pune | 2024-01-15
102 | Neha | Mumbai | 2024-02-10
103 | Amit | Delhi | 2024-03-05
104 | Priya | Pune | 2024-04-20

Basic SELECT
SELECT name, city FROM customers;

Output
name | city
Rahul | Pune
Neha | Mumbai
Amit | Delhi
Priya | Pune

What Happens
- Database scans all rows
- Returns name and city columns
- No filtering yet

Why SELECT Matters
- Smaller output
- Faster queries
- Clear analysis

What WHERE Does
- WHERE filters rows
- It answers conditions like who, when, how much

Think Like This
- SELECT decides columns
- WHERE decides rows

Basic WHERE Example
SELECT name, city FROM customers WHERE city = 'Pune';

Output
name | city
Rahul | Pune
Priya | Pune

Common Operators
- = equal
- != not equal
- > greater than
- < less than
- > =, <=

Example
SELECT name, signup_date FROM customers WHERE signup_date >= '2024-03-01';

Output
name | signup_date
Amit | 2024-03-05
Priya | 2024-04-20

Logical Filters
AND
- All conditions must match
Example: SELECT name FROM customers WHERE city = 'Pune' AND signup_date >= '2024-01-01';

Output
name
Rahul
Priya

OR
- Any condition can match
Example: SELECT name FROM customers WHERE city = 'Pune' OR city = 'Mumbai';

Output
name
Rahul
Neha
Priya

IN
- Shortcut for multiple OR conditions
Example: SELECT name FROM customers WHERE city IN ('Pune','Mumbai','Delhi');

Output
name
Rahul
Neha
Amit
Priya

BETWEEN
- Filters within a range
- Inclusive of start and end
Example: SELECT name FROM customers WHERE signup_date BETWEEN '2024-01-01' AND '2024-03-31';

Output
name
Rahul
Neha
Amit

Filtering Numbers
Example table: orders
order_id | customer_id | amount | order_date
1 | 101 | 3000 | 2024-01-16
2 | 102 | 6000 | 2024-02-11
3 | 103 | 4000 | 2024-03-06
SELECT order_id, amount FROM orders WHERE amount > 5000;

Output
order_id | amount
2 | 6000

Filtering Text
- Text values go inside quotes
- Case sensitivity depends on database

Filtering NULL Values
- NULL means missing value
- = NULL does not work
Correct way: SELECT name FROM customers WHERE city IS NULL;

Assume city is NULL for customer_id 103
Output
name
Amit

Exclude NULL: SELECT name FROM customers WHERE city IS NOT NULL;

Output
name
Rahul
Neha
Priya

How SELECT and WHERE Work Together
- FROM picks the table
- WHERE filters rows
- SELECT picks columns
- Result is sent back

Real Business Example
- Manager asks for Pune customers with orders above 5,000
- WHERE applies city and amount filters
- SELECT shows required columns

Assume orders table has customer_id 101 with amount 6000
SELECT name FROM customers WHERE city = 'Pune' AND customer_id IN (SELECT customer_id FROM orders WHERE amount > 5000);

Output
name
Rahul

Common Beginner Mistakes
- Using WHERE before FROM
- Forgetting quotes for text
- Using = NULL
- Writing SELECT * always

Double Tap ♥️ For More
9
🚀 𝟰 𝗙𝗥𝗘𝗘 𝗧𝗲𝗰𝗵 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗘𝗻𝗿𝗼𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟲 😍

📈 Upgrade your career with in-demand tech skills & FREE certifications!

1️⃣ AI & ML – https://pdlink.in/4bhetTu

2️⃣ Data Analytics – https://pdlink.in/497MMLw

3️⃣ Cloud Computing – https://pdlink.in/3LoutZd

4️⃣ Cyber Security – https://pdlink.in/3N9VOyW

More Courses – https://pdlink.in/4qgtrxU

🎓 100% FREE | Certificates Provided | Learn Anytime, Anywhere
Today, let's move to the next topic of SQL Roadmap:

Basic SQL Queries: ORDER BY and LIMIT - Sorting and Controlling Output

Why Sorting
- Raw data has no order
- Sorted data reveals patterns
- Analysts sort data in almost every query

What ORDER BY Does
- ORDER BY sorts result rows
- Sorting happens after filtering
- Default order is ascending

Basic Syntax
SELECT column_name
FROM table_name
ORDER BY column_name;


Example Table: customers
| customer_id | name | city | signup_date |

Sort by Name
SELECT name, city
FROM customers
ORDER BY name;

- Rows sorted alphabetically by name (A to Z)

Descending Order
- Use DESC for reverse order
SELECT name, signup_date
FROM customers
ORDER BY signup_date DESC;


Use Cases
- Latest users first
- Highest sales first
- Recent transactions on top

Sorting Numbers
SELECT order_id, amount
FROM orders
ORDER BY amount DESC;


Sorting by Multiple Columns
- First column sorts primary
- Second column breaks ties
SELECT city, signup_date
FROM customers
ORDER BY city, signup_date DESC;


LIMIT Explained
- LIMIT restricts number of rows returned
- Used to preview data
- Used to get top results
SELECT name, signup_date
FROM customers
ORDER BY signup_date DESC
LIMIT 5;


Top N Queries
SELECT name, amount
FROM orders
ORDER BY amount DESC
LIMIT 10;


Filtering + Sorting + Limiting Together
Execution order:
1. FROM
2. WHERE
3. ORDER BY
4. LIMIT
SELECT name, amount
FROM orders
WHERE amount > 5000
ORDER BY amount DESC
LIMIT 3;


Double Tap ♥️ For More
7