7 Must-Have Tools for Data Analysts in 2025:
✅ SQL – Still the #1 skill for querying and managing structured data
✅ Excel / Google Sheets – Quick analysis, pivot tables, and essential calculations
✅ Python (Pandas, NumPy) – For deep data manipulation and automation
✅ Power BI – Transform data into interactive dashboards
✅ Tableau – Visualize data patterns and trends with ease
✅ Jupyter Notebook – Document, code, and visualize all in one place
✅ Looker Studio – A free and sleek way to create shareable reports with live data.
Perfect blend of code, visuals, and storytelling.
React with ❤️ for free tutorials on each tool
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
✅ SQL – Still the #1 skill for querying and managing structured data
✅ Excel / Google Sheets – Quick analysis, pivot tables, and essential calculations
✅ Python (Pandas, NumPy) – For deep data manipulation and automation
✅ Power BI – Transform data into interactive dashboards
✅ Tableau – Visualize data patterns and trends with ease
✅ Jupyter Notebook – Document, code, and visualize all in one place
✅ Looker Studio – A free and sleek way to create shareable reports with live data.
Perfect blend of code, visuals, and storytelling.
React with ❤️ for free tutorials on each tool
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤18
📊 Data Analyst Roadmap (2025)
Master the Skills That Top Companies Are Hiring For!
📍 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
📍 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
📍 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
📍 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
📍 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
📍 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
📍 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
📍 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
📍 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
📍 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
✨ React ❤️ for more
Master the Skills That Top Companies Are Hiring For!
📍 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
📍 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
📍 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
📍 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
📍 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
📍 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
📍 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
📍 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
📍 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
📍 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
✨ React ❤️ for more
❤26👍3
SQL Basics for Beginners: Must-Know Concepts
1. What is SQL?
SQL (Structured Query Language) is a standard language used to communicate with databases. It allows you to query, update, and manage relational databases by writing simple or complex queries.
2. SQL Syntax
SQL is written using statements, which consist of keywords like
- SQL keywords are not case-sensitive, but it's common to write them in uppercase (e.g.,
3. SQL Data Types
Databases store data in different formats. The most common data types are:
-
-
-
-
4. Basic SQL Queries
Here are some fundamental SQL operations:
- SELECT Statement: Used to retrieve data from a database.
- WHERE Clause: Filters data based on conditions.
- ORDER BY: Sorts data in ascending (
- LIMIT: Limits the number of rows returned.
5. Filtering Data with WHERE Clause
The
You can use comparison operators like:
-
-
-
-
6. Aggregating Data
SQL provides functions to summarize or aggregate data:
- COUNT(): Counts the number of rows.
- SUM(): Adds up values in a column.
- AVG(): Calculates the average value.
- GROUP BY: Groups rows that have the same values into summary rows.
7. Joins in SQL
Joins combine data from two or more tables:
- INNER JOIN: Retrieves records with matching values in both tables.
- LEFT JOIN: Retrieves all records from the left table and matched records from the right table.
8. Inserting Data
To add new data to a table, you use the
9. Updating Data
You can update existing data in a table using the
10. Deleting Data
To remove data from a table, use the
Here you can find essential SQL Interview Resources👇
https://news.1rj.ru/str/DataSimplifier
Like this post if you need more 👍❤️
Hope it helps :)
1. What is SQL?
SQL (Structured Query Language) is a standard language used to communicate with databases. It allows you to query, update, and manage relational databases by writing simple or complex queries.
2. SQL Syntax
SQL is written using statements, which consist of keywords like
SELECT, FROM, WHERE, etc., to perform operations on the data.- SQL keywords are not case-sensitive, but it's common to write them in uppercase (e.g.,
SELECT, FROM).3. SQL Data Types
Databases store data in different formats. The most common data types are:
-
INT (Integer): For whole numbers.-
VARCHAR(n) or TEXT: For storing text data.-
DATE: For dates.-
DECIMAL: For precise decimal values, often used in financial calculations.4. Basic SQL Queries
Here are some fundamental SQL operations:
- SELECT Statement: Used to retrieve data from a database.
SELECT column1, column2 FROM table_name;
- WHERE Clause: Filters data based on conditions.
SELECT * FROM table_name WHERE condition;
- ORDER BY: Sorts data in ascending (
ASC) or descending (DESC) order.SELECT column1, column2 FROM table_name ORDER BY column1 ASC;
- LIMIT: Limits the number of rows returned.
SELECT * FROM table_name LIMIT 5;
5. Filtering Data with WHERE Clause
The
WHERE clause helps you filter data based on a condition:SELECT * FROM employees WHERE salary > 50000;
You can use comparison operators like:
-
=: Equal to-
>: Greater than-
<: Less than-
LIKE: For pattern matching6. Aggregating Data
SQL provides functions to summarize or aggregate data:
- COUNT(): Counts the number of rows.
SELECT COUNT(*) FROM table_name;
- SUM(): Adds up values in a column.
SELECT SUM(salary) FROM employees;
- AVG(): Calculates the average value.
SELECT AVG(salary) FROM employees;
- GROUP BY: Groups rows that have the same values into summary rows.
SELECT department, AVG(salary) FROM employees GROUP BY department;
7. Joins in SQL
Joins combine data from two or more tables:
- INNER JOIN: Retrieves records with matching values in both tables.
SELECT employees.name, departments.department
FROM employees
INNER JOIN departments
ON employees.department_id = departments.id;
- LEFT JOIN: Retrieves all records from the left table and matched records from the right table.
SELECT employees.name, departments.department
FROM employees
LEFT JOIN departments
ON employees.department_id = departments.id;
8. Inserting Data
To add new data to a table, you use the
INSERT INTO statement: INSERT INTO employees (name, position, salary) VALUES ('John Doe', 'Analyst', 60000);
9. Updating Data
You can update existing data in a table using the
UPDATE statement:UPDATE employees SET salary = 65000 WHERE name = 'John Doe';
10. Deleting Data
To remove data from a table, use the
DELETE statement:DELETE FROM employees WHERE name = 'John Doe';
Here you can find essential SQL Interview Resources👇
https://news.1rj.ru/str/DataSimplifier
Like this post if you need more 👍❤️
Hope it helps :)
❤11
If you’re a Data Analyst, chances are you use 𝐒𝐐𝐋 every single day. And if you’re preparing for interviews, you’ve probably realized that it's not just about writing queries it's about writing smart, efficient, and scalable ones.
1. 𝐁𝐫𝐞𝐚𝐤 𝐈𝐭 𝐃𝐨𝐰𝐧 𝐰𝐢𝐭𝐡 𝐂𝐓𝐄𝐬 (𝐂𝐨𝐦𝐦𝐨𝐧 𝐓𝐚𝐛𝐥𝐞 𝐄𝐱𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧𝐬)
Ever worked on a query that became an unreadable monster? CTEs let you break that down into logical steps. You can treat them like temporary views — great for simplifying logic and improving collaboration across your team.
2. 𝐔𝐬𝐞 𝐖𝐢𝐧𝐝𝐨𝐰 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬
Forget the mess of subqueries. With functions like ROW_NUMBER(), RANK(), LEAD() and LAG(), you can compare rows, rank items, or calculate running totals — all within the same query. Total
3. 𝐒𝐮𝐛𝐪𝐮𝐞𝐫𝐢𝐞𝐬 (𝐍𝐞𝐬𝐭𝐞𝐝 𝐐𝐮𝐞𝐫𝐢𝐞𝐬)
Yes, they're old school, but nested subqueries are still powerful. Use them when you want to filter based on results of another query or isolate logic step-by-step before joining with the big picture.
4. 𝐈𝐧𝐝𝐞𝐱𝐞𝐬 & 𝐐𝐮𝐞𝐫𝐲 𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧
Query taking forever? Look at your indexes. Index the columns you use in JOINs, WHERE, and GROUP BY. Even basic knowledge of how the SQL engine reads data can take your skills up a notch.
5. 𝐉𝐨𝐢𝐧𝐬 𝐯𝐬. 𝐒𝐮𝐛𝐪𝐮𝐞𝐫𝐢𝐞𝐬
Joins are usually faster and better for combining large datasets. Subqueries, on the other hand, are cleaner when doing one-off filters or smaller operations. Choose wisely based on the context.
6. 𝐂𝐀𝐒𝐄 𝐒𝐭𝐚𝐭𝐞𝐦𝐞𝐧𝐭𝐬:
Want to categorize or bucket data without creating a separate table? Use CASE. It’s ideal for conditional logic, custom labels, and grouping in a single query.
7. 𝐀𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐢𝐨𝐧𝐬 & 𝐆𝐑𝐎𝐔𝐏 𝐁𝐘
Most analytics questions start with "how many", "what’s the average", or "which is the highest?". SUM(), COUNT(), AVG(), etc., and pair them with GROUP BY to drive insights that matter.
8. 𝐃𝐚𝐭𝐞𝐬 𝐀𝐫𝐞 𝐀𝐥𝐰𝐚𝐲𝐬 𝐓𝐫𝐢𝐜𝐤𝐲
Time-based analysis is everywhere: trends, cohorts, seasonality, etc. Get familiar with functions like DATEADD, DATEDIFF, DATE_TRUNC, and DATEPART to work confidently with time series data.
9. 𝐒𝐞𝐥𝐟-𝐉𝐨𝐢𝐧𝐬 & 𝐑𝐞𝐜𝐮𝐫𝐬𝐢𝐯𝐞 𝐐𝐮𝐞𝐫𝐢𝐞𝐬 𝐟𝐨𝐫 𝐇𝐢𝐞𝐫𝐚𝐫𝐜𝐡𝐢𝐞𝐬
Whether it's org charts or product categories, not all data is flat. Learn how to join a table to itself or use recursive CTEs to navigate parent-child relationships effectively.
You don’t need to memorize 100 functions. You need to understand 10 really well and apply them smartly. These are the concepts I keep going back to not just in interviews, but in the real world where clarity, performance, and logic matter most.
1. 𝐁𝐫𝐞𝐚𝐤 𝐈𝐭 𝐃𝐨𝐰𝐧 𝐰𝐢𝐭𝐡 𝐂𝐓𝐄𝐬 (𝐂𝐨𝐦𝐦𝐨𝐧 𝐓𝐚𝐛𝐥𝐞 𝐄𝐱𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧𝐬)
Ever worked on a query that became an unreadable monster? CTEs let you break that down into logical steps. You can treat them like temporary views — great for simplifying logic and improving collaboration across your team.
2. 𝐔𝐬𝐞 𝐖𝐢𝐧𝐝𝐨𝐰 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬
Forget the mess of subqueries. With functions like ROW_NUMBER(), RANK(), LEAD() and LAG(), you can compare rows, rank items, or calculate running totals — all within the same query. Total
3. 𝐒𝐮𝐛𝐪𝐮𝐞𝐫𝐢𝐞𝐬 (𝐍𝐞𝐬𝐭𝐞𝐝 𝐐𝐮𝐞𝐫𝐢𝐞𝐬)
Yes, they're old school, but nested subqueries are still powerful. Use them when you want to filter based on results of another query or isolate logic step-by-step before joining with the big picture.
4. 𝐈𝐧𝐝𝐞𝐱𝐞𝐬 & 𝐐𝐮𝐞𝐫𝐲 𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧
Query taking forever? Look at your indexes. Index the columns you use in JOINs, WHERE, and GROUP BY. Even basic knowledge of how the SQL engine reads data can take your skills up a notch.
5. 𝐉𝐨𝐢𝐧𝐬 𝐯𝐬. 𝐒𝐮𝐛𝐪𝐮𝐞𝐫𝐢𝐞𝐬
Joins are usually faster and better for combining large datasets. Subqueries, on the other hand, are cleaner when doing one-off filters or smaller operations. Choose wisely based on the context.
6. 𝐂𝐀𝐒𝐄 𝐒𝐭𝐚𝐭𝐞𝐦𝐞𝐧𝐭𝐬:
Want to categorize or bucket data without creating a separate table? Use CASE. It’s ideal for conditional logic, custom labels, and grouping in a single query.
7. 𝐀𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐢𝐨𝐧𝐬 & 𝐆𝐑𝐎𝐔𝐏 𝐁𝐘
Most analytics questions start with "how many", "what’s the average", or "which is the highest?". SUM(), COUNT(), AVG(), etc., and pair them with GROUP BY to drive insights that matter.
8. 𝐃𝐚𝐭𝐞𝐬 𝐀𝐫𝐞 𝐀𝐥𝐰𝐚𝐲𝐬 𝐓𝐫𝐢𝐜𝐤𝐲
Time-based analysis is everywhere: trends, cohorts, seasonality, etc. Get familiar with functions like DATEADD, DATEDIFF, DATE_TRUNC, and DATEPART to work confidently with time series data.
9. 𝐒𝐞𝐥𝐟-𝐉𝐨𝐢𝐧𝐬 & 𝐑𝐞𝐜𝐮𝐫𝐬𝐢𝐯𝐞 𝐐𝐮𝐞𝐫𝐢𝐞𝐬 𝐟𝐨𝐫 𝐇𝐢𝐞𝐫𝐚𝐫𝐜𝐡𝐢𝐞𝐬
Whether it's org charts or product categories, not all data is flat. Learn how to join a table to itself or use recursive CTEs to navigate parent-child relationships effectively.
You don’t need to memorize 100 functions. You need to understand 10 really well and apply them smartly. These are the concepts I keep going back to not just in interviews, but in the real world where clarity, performance, and logic matter most.
❤14👍1
SQL Basics for Beginners: Must-Know Concepts
1. What is SQL?
SQL (Structured Query Language) is a standard language used to communicate with databases. It allows you to query, update, and manage relational databases by writing simple or complex queries.
2. SQL Syntax
SQL is written using statements, which consist of keywords like
- SQL keywords are not case-sensitive, but it's common to write them in uppercase (e.g.,
3. SQL Data Types
Databases store data in different formats. The most common data types are:
-
-
-
-
4. Basic SQL Queries
Here are some fundamental SQL operations:
- SELECT Statement: Used to retrieve data from a database.
- WHERE Clause: Filters data based on conditions.
- ORDER BY: Sorts data in ascending (
- LIMIT: Limits the number of rows returned.
5. Filtering Data with WHERE Clause
The
You can use comparison operators like:
-
-
-
-
6. Aggregating Data
SQL provides functions to summarize or aggregate data:
- COUNT(): Counts the number of rows.
- SUM(): Adds up values in a column.
- AVG(): Calculates the average value.
- GROUP BY: Groups rows that have the same values into summary rows.
7. Joins in SQL
Joins combine data from two or more tables:
- INNER JOIN: Retrieves records with matching values in both tables.
- LEFT JOIN: Retrieves all records from the left table and matched records from the right table.
8. Inserting Data
To add new data to a table, you use the
9. Updating Data
You can update existing data in a table using the
10. Deleting Data
To remove data from a table, use the
Here you can find essential SQL Interview Resources👇
https://news.1rj.ru/str/DataSimplifier
Like this post if you need more 👍❤️
Hope it helps :)
1. What is SQL?
SQL (Structured Query Language) is a standard language used to communicate with databases. It allows you to query, update, and manage relational databases by writing simple or complex queries.
2. SQL Syntax
SQL is written using statements, which consist of keywords like
SELECT, FROM, WHERE, etc., to perform operations on the data.- SQL keywords are not case-sensitive, but it's common to write them in uppercase (e.g.,
SELECT, FROM).3. SQL Data Types
Databases store data in different formats. The most common data types are:
-
INT (Integer): For whole numbers.-
VARCHAR(n) or TEXT: For storing text data.-
DATE: For dates.-
DECIMAL: For precise decimal values, often used in financial calculations.4. Basic SQL Queries
Here are some fundamental SQL operations:
- SELECT Statement: Used to retrieve data from a database.
SELECT column1, column2 FROM table_name;
- WHERE Clause: Filters data based on conditions.
SELECT * FROM table_name WHERE condition;
- ORDER BY: Sorts data in ascending (
ASC) or descending (DESC) order.SELECT column1, column2 FROM table_name ORDER BY column1 ASC;
- LIMIT: Limits the number of rows returned.
SELECT * FROM table_name LIMIT 5;
5. Filtering Data with WHERE Clause
The
WHERE clause helps you filter data based on a condition:SELECT * FROM employees WHERE salary > 50000;
You can use comparison operators like:
-
=: Equal to-
>: Greater than-
<: Less than-
LIKE: For pattern matching6. Aggregating Data
SQL provides functions to summarize or aggregate data:
- COUNT(): Counts the number of rows.
SELECT COUNT(*) FROM table_name;
- SUM(): Adds up values in a column.
SELECT SUM(salary) FROM employees;
- AVG(): Calculates the average value.
SELECT AVG(salary) FROM employees;
- GROUP BY: Groups rows that have the same values into summary rows.
SELECT department, AVG(salary) FROM employees GROUP BY department;
7. Joins in SQL
Joins combine data from two or more tables:
- INNER JOIN: Retrieves records with matching values in both tables.
SELECT employees.name, departments.department
FROM employees
INNER JOIN departments
ON employees.department_id = departments.id;
- LEFT JOIN: Retrieves all records from the left table and matched records from the right table.
SELECT employees.name, departments.department
FROM employees
LEFT JOIN departments
ON employees.department_id = departments.id;
8. Inserting Data
To add new data to a table, you use the
INSERT INTO statement: INSERT INTO employees (name, position, salary) VALUES ('John Doe', 'Analyst', 60000);
9. Updating Data
You can update existing data in a table using the
UPDATE statement:UPDATE employees SET salary = 65000 WHERE name = 'John Doe';
10. Deleting Data
To remove data from a table, use the
DELETE statement:DELETE FROM employees WHERE name = 'John Doe';
Here you can find essential SQL Interview Resources👇
https://news.1rj.ru/str/DataSimplifier
Like this post if you need more 👍❤️
Hope it helps :)
❤8👍1
Top Python Libraries for Data Analysis
Pandas: For data manipulation and analysis.
NumPy: For numerical computations and array operations.
Matplotlib: For creating static visualizations.
Seaborn: For statistical data visualization.
SciPy: For advanced mathematical and scientific computations.
Scikit-learn: For machine learning tasks.
Statsmodels: For statistical modeling and hypothesis testing.
Plotly: For interactive visualizations.
OpenPyXL: For working with Excel files.
PySpark: For big data processing.
Here you can find essential Python Interview Resources👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this 👍♥️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
Pandas: For data manipulation and analysis.
NumPy: For numerical computations and array operations.
Matplotlib: For creating static visualizations.
Seaborn: For statistical data visualization.
SciPy: For advanced mathematical and scientific computations.
Scikit-learn: For machine learning tasks.
Statsmodels: For statistical modeling and hypothesis testing.
Plotly: For interactive visualizations.
OpenPyXL: For working with Excel files.
PySpark: For big data processing.
Here you can find essential Python Interview Resources👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this 👍♥️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤7👍1
Junior-level Data Analyst interview questions:
Introduction and Background
1. Can you tell me about your background and how you became interested in data analysis?
2. What do you know about our company/organization?
3. Why do you want to work as a data analyst?
Data Analysis and Interpretation
1. What is your experience with data analysis tools like Excel, SQL, or Tableau?
2. How would you approach analyzing a large dataset to identify trends and patterns?
3. Can you explain the concept of correlation versus causation?
4. How do you handle missing or incomplete data?
5. Can you walk me through a time when you had to interpret complex data results?
Technical Skills
1. Write a SQL query to extract data from a database.
2. How do you create a pivot table in Excel?
3. Can you explain the difference between a histogram and a box plot?
4. How do you perform data visualization using Tableau or Power BI?
5. Can you write a simple Python or R noscript to manipulate data?
Statistics and Math
1. What is the difference between mean, median, and mode?
2. Can you explain the concept of standard deviation and variance?
3. How do you calculate probability and confidence intervals?
4. Can you describe a time when you applied statistical concepts to a real-world problem?
5. How do you approach hypothesis testing?
Communication and Storytelling
1. Can you explain a complex data concept to a non-technical person?
2. How do you present data insights to stakeholders?
3. Can you walk me through a time when you had to communicate data results to a team?
4. How do you create effective data visualizations?
5. Can you tell a story using data?
Case Studies and Scenarios
1. You are given a dataset with customer purchase history. How would you analyze it to identify trends?
2. A company wants to increase sales. How would you use data to inform marketing strategies?
3. You notice a discrepancy in sales data. How would you investigate and resolve the issue?
4. Can you describe a time when you had to work with a stakeholder to understand their data needs?
5. How would you prioritize data projects with limited resources?
Behavioral Questions
1. Can you describe a time when you overcame a difficult data analysis challenge?
2. How do you handle tight deadlines and multiple projects?
3. Can you tell me about a project you worked on and your role in it?
4. How do you stay up-to-date with new data tools and technologies?
5. Can you describe a time when you received feedback on your data analysis work?
Final Questions
1. Do you have any questions about the company or role?
2. What do you think sets you apart from other candidates?
3. Can you summarize your experience and qualifications?
4. What are your long-term career goals?
Hope this helps you 😊
Introduction and Background
1. Can you tell me about your background and how you became interested in data analysis?
2. What do you know about our company/organization?
3. Why do you want to work as a data analyst?
Data Analysis and Interpretation
1. What is your experience with data analysis tools like Excel, SQL, or Tableau?
2. How would you approach analyzing a large dataset to identify trends and patterns?
3. Can you explain the concept of correlation versus causation?
4. How do you handle missing or incomplete data?
5. Can you walk me through a time when you had to interpret complex data results?
Technical Skills
1. Write a SQL query to extract data from a database.
2. How do you create a pivot table in Excel?
3. Can you explain the difference between a histogram and a box plot?
4. How do you perform data visualization using Tableau or Power BI?
5. Can you write a simple Python or R noscript to manipulate data?
Statistics and Math
1. What is the difference between mean, median, and mode?
2. Can you explain the concept of standard deviation and variance?
3. How do you calculate probability and confidence intervals?
4. Can you describe a time when you applied statistical concepts to a real-world problem?
5. How do you approach hypothesis testing?
Communication and Storytelling
1. Can you explain a complex data concept to a non-technical person?
2. How do you present data insights to stakeholders?
3. Can you walk me through a time when you had to communicate data results to a team?
4. How do you create effective data visualizations?
5. Can you tell a story using data?
Case Studies and Scenarios
1. You are given a dataset with customer purchase history. How would you analyze it to identify trends?
2. A company wants to increase sales. How would you use data to inform marketing strategies?
3. You notice a discrepancy in sales data. How would you investigate and resolve the issue?
4. Can you describe a time when you had to work with a stakeholder to understand their data needs?
5. How would you prioritize data projects with limited resources?
Behavioral Questions
1. Can you describe a time when you overcame a difficult data analysis challenge?
2. How do you handle tight deadlines and multiple projects?
3. Can you tell me about a project you worked on and your role in it?
4. How do you stay up-to-date with new data tools and technologies?
5. Can you describe a time when you received feedback on your data analysis work?
Final Questions
1. Do you have any questions about the company or role?
2. What do you think sets you apart from other candidates?
3. Can you summarize your experience and qualifications?
4. What are your long-term career goals?
Hope this helps you 😊
❤19
Importance of AI in Data Analytics
AI is transforming the way data is analyzed and insights are generated. Here's how AI adds value in data analytics:
1. Automated Data Cleaning
AI helps in detecting anomalies, missing values, and outliers automatically, improving data quality and saving analysts hours of manual work.
2. Faster & Smarter Decision Making
AI models can process massive datasets in seconds and suggest actionable insights, enabling real-time decision-making.
3. Predictive Analytics
AI enables forecasting future trends and behaviors using machine learning models (e.g., sales predictions, churn forecasting).
4. Natural Language Processing (NLP)
AI can analyze unstructured data like reviews, feedback, or comments using sentiment analysis, keyword extraction, and topic modeling.
5. Pattern Recognition
AI uncovers hidden patterns, correlations, and clusters in data that traditional analysis may miss.
6. Personalization & Recommendation
AI algorithms power recommendation systems (like on Netflix, Amazon) that personalize user experiences based on behavioral data.
7. Data Visualization Enhancement
AI auto-generates dashboards, chooses best chart types, and highlights key anomalies or insights without manual intervention.
8. Fraud Detection & Risk Analysis
AI models detect fraud and mitigate risks in real-time using anomaly detection and classification techniques.
9. Chatbots & Virtual Analysts
AI-powered tools like ChatGPT allow users to interact with data using natural language, removing the need for technical skills.
10. Operational Efficiency
AI automates repetitive tasks like report generation, data transformation, and alerts—freeing analysts to focus on strategy.
AI Studio: https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
#dataanalytics
AI is transforming the way data is analyzed and insights are generated. Here's how AI adds value in data analytics:
1. Automated Data Cleaning
AI helps in detecting anomalies, missing values, and outliers automatically, improving data quality and saving analysts hours of manual work.
2. Faster & Smarter Decision Making
AI models can process massive datasets in seconds and suggest actionable insights, enabling real-time decision-making.
3. Predictive Analytics
AI enables forecasting future trends and behaviors using machine learning models (e.g., sales predictions, churn forecasting).
4. Natural Language Processing (NLP)
AI can analyze unstructured data like reviews, feedback, or comments using sentiment analysis, keyword extraction, and topic modeling.
5. Pattern Recognition
AI uncovers hidden patterns, correlations, and clusters in data that traditional analysis may miss.
6. Personalization & Recommendation
AI algorithms power recommendation systems (like on Netflix, Amazon) that personalize user experiences based on behavioral data.
7. Data Visualization Enhancement
AI auto-generates dashboards, chooses best chart types, and highlights key anomalies or insights without manual intervention.
8. Fraud Detection & Risk Analysis
AI models detect fraud and mitigate risks in real-time using anomaly detection and classification techniques.
9. Chatbots & Virtual Analysts
AI-powered tools like ChatGPT allow users to interact with data using natural language, removing the need for technical skills.
10. Operational Efficiency
AI automates repetitive tasks like report generation, data transformation, and alerts—freeing analysts to focus on strategy.
AI Studio: https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
#dataanalytics
❤8
Many people ask this common question “Can I get a job with just SQL and Excel?” or “Can I get a job with just Power BI and Python?”.
The answer to all of those questions is yes.
There are jobs that use only SQL, Tableau, Power BI, Excel, Python, or R or some combination of those.
However, the combination of tools you learn impacts the total number of jobs you are qualified for.
For example, let’s say with just SQL and Excel you are qualified for 10 jobs, but if you add Tableau to that, you are qualified for 50 jobs.
If you have a success rate of landing a job you’re qualified for of 4%, having 5 times as many jobs to go for greatly improves your odds of landing a job.
Does this mean you should go out there and learn every single skill any data analyst job requires?
NO!
It’s about finding the core tools that many jobs want.
And, in my opinion, those tools are SQL, Excel, and a visualization tool.
With these three tools, you are qualified for the majority of entry level data jobs and many higher level jobs.
So, you can land a job with whatever tools you’re comfortable with.
But if you have the three tools above in your toolbelt, you will have many more jobs to apply for and greatly improve your chances of snagging one.
The answer to all of those questions is yes.
There are jobs that use only SQL, Tableau, Power BI, Excel, Python, or R or some combination of those.
However, the combination of tools you learn impacts the total number of jobs you are qualified for.
For example, let’s say with just SQL and Excel you are qualified for 10 jobs, but if you add Tableau to that, you are qualified for 50 jobs.
If you have a success rate of landing a job you’re qualified for of 4%, having 5 times as many jobs to go for greatly improves your odds of landing a job.
Does this mean you should go out there and learn every single skill any data analyst job requires?
NO!
It’s about finding the core tools that many jobs want.
And, in my opinion, those tools are SQL, Excel, and a visualization tool.
With these three tools, you are qualified for the majority of entry level data jobs and many higher level jobs.
So, you can land a job with whatever tools you’re comfortable with.
But if you have the three tools above in your toolbelt, you will have many more jobs to apply for and greatly improve your chances of snagging one.
❤11👍1
Complete Syllabus for Data Analytics interview:
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting
- Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals:
Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting
- Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals:
Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
❤19
If I need to teach someone data analytics from the basics, here is my strategy:
1. I will first remove the fear of tools from that person
2. i will start with the excel because it looks familiar and easy to use
3. I put more emphasis on projects like at least 5 to 6 with the excel. because in industry you learn by doing things
4. I will release the person from the tutorial hell and move into a more action oriented person
5. Then I move to the sql because every job wants it , even with the ai tools you need strong understanding for it if you are going to use it daily
6. After strong understanding, I will push the person to solve 100 to 150 Sql problems from basic to advance
7. It helps the person to develop the analytical thinking
8. Then I push the person to solve 3 case studies as it helps how we pull the data in the real life
9. Then I move the person to power bi to do again 5 projects by using either sql or excel files
10. Now the fear is removed.
11. Now I push the person to solve unguided challenges and present them by video recording as it increases the problem solving, communication and data story telling skills
12. Further it helps you to clear case study round given by most of the companies
13. Now i help the person how to present them in resume and also how these tools are used in real world.
14. You know the interesting fact, all of above is present free in youtube and I also mentor the people through existing youtube videos.
15. But people stuck in the tutorial hell, loose motivation , stay confused that they are either in the right direction or not.
16. As a personal mentor , I help them to get of the tutorial hell, set them in the right direction and they stay motivated when they start to see the difference before amd after mentorship
I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://topmate.io/analyst/861634
Hope this helps you 😊
1. I will first remove the fear of tools from that person
2. i will start with the excel because it looks familiar and easy to use
3. I put more emphasis on projects like at least 5 to 6 with the excel. because in industry you learn by doing things
4. I will release the person from the tutorial hell and move into a more action oriented person
5. Then I move to the sql because every job wants it , even with the ai tools you need strong understanding for it if you are going to use it daily
6. After strong understanding, I will push the person to solve 100 to 150 Sql problems from basic to advance
7. It helps the person to develop the analytical thinking
8. Then I push the person to solve 3 case studies as it helps how we pull the data in the real life
9. Then I move the person to power bi to do again 5 projects by using either sql or excel files
10. Now the fear is removed.
11. Now I push the person to solve unguided challenges and present them by video recording as it increases the problem solving, communication and data story telling skills
12. Further it helps you to clear case study round given by most of the companies
13. Now i help the person how to present them in resume and also how these tools are used in real world.
14. You know the interesting fact, all of above is present free in youtube and I also mentor the people through existing youtube videos.
15. But people stuck in the tutorial hell, loose motivation , stay confused that they are either in the right direction or not.
16. As a personal mentor , I help them to get of the tutorial hell, set them in the right direction and they stay motivated when they start to see the difference before amd after mentorship
I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://topmate.io/analyst/861634
Hope this helps you 😊
❤28🎉1
30-day Roadmap plan for SQL covers beginner, intermediate, and advanced topics 👇
Week 1: Beginner Level
Day 1-3: Introduction and Setup
1. Day 1: Introduction to SQL, its importance, and various database systems.
2. Day 2: Installing a SQL database (e.g., MySQL, PostgreSQL).
3. Day 3: Setting up a sample database and practicing basic commands.
Day 4-7: Basic SQL Queries
4. Day 4: SELECT statement, retrieving data from a single table.
5. Day 5: WHERE clause and filtering data.
6. Day 6: Sorting data with ORDER BY.
7. Day 7: Aggregating data with GROUP BY and using aggregate functions (COUNT, SUM, AVG).
Week 2-3: Intermediate Level
Day 8-14: Working with Multiple Tables
8. Day 8: Introduction to JOIN operations.
9. Day 9: INNER JOIN and LEFT JOIN.
10. Day 10: RIGHT JOIN and FULL JOIN.
11. Day 11: Subqueries and correlated subqueries.
12. Day 12: Creating and modifying tables with CREATE, ALTER, and DROP.
13. Day 13: INSERT, UPDATE, and DELETE statements.
14. Day 14: Understanding indexes and optimizing queries.
Day 15-21: Data Manipulation
15. Day 15: CASE statements for conditional logic.
16. Day 16: Using UNION and UNION ALL.
17. Day 17: Data type conversions (CAST and CONVERT).
18. Day 18: Working with date and time functions.
19. Day 19: String manipulation functions.
20. Day 20: Error handling with TRY...CATCH.
21. Day 21: Practice complex queries and data manipulation tasks.
Week 4: Advanced Level
Day 22-28: Advanced Topics
22. Day 22: Working with Views.
23. Day 23: Stored Procedures and Functions.
24. Day 24: Triggers and transactions.
25. Day 25: Windows Function
Day 26-30: Real-World Projects
26. Day 26: SQL Project-1
27. Day 27: SQL Project-2
28. Day 28: SQL Project-3
29. Day 29: Practice questions set
30. Day 30: Final review and practice, explore advanced topics in depth, or work on a personal project.
Like for more
Hope it helps :)
Week 1: Beginner Level
Day 1-3: Introduction and Setup
1. Day 1: Introduction to SQL, its importance, and various database systems.
2. Day 2: Installing a SQL database (e.g., MySQL, PostgreSQL).
3. Day 3: Setting up a sample database and practicing basic commands.
Day 4-7: Basic SQL Queries
4. Day 4: SELECT statement, retrieving data from a single table.
5. Day 5: WHERE clause and filtering data.
6. Day 6: Sorting data with ORDER BY.
7. Day 7: Aggregating data with GROUP BY and using aggregate functions (COUNT, SUM, AVG).
Week 2-3: Intermediate Level
Day 8-14: Working with Multiple Tables
8. Day 8: Introduction to JOIN operations.
9. Day 9: INNER JOIN and LEFT JOIN.
10. Day 10: RIGHT JOIN and FULL JOIN.
11. Day 11: Subqueries and correlated subqueries.
12. Day 12: Creating and modifying tables with CREATE, ALTER, and DROP.
13. Day 13: INSERT, UPDATE, and DELETE statements.
14. Day 14: Understanding indexes and optimizing queries.
Day 15-21: Data Manipulation
15. Day 15: CASE statements for conditional logic.
16. Day 16: Using UNION and UNION ALL.
17. Day 17: Data type conversions (CAST and CONVERT).
18. Day 18: Working with date and time functions.
19. Day 19: String manipulation functions.
20. Day 20: Error handling with TRY...CATCH.
21. Day 21: Practice complex queries and data manipulation tasks.
Week 4: Advanced Level
Day 22-28: Advanced Topics
22. Day 22: Working with Views.
23. Day 23: Stored Procedures and Functions.
24. Day 24: Triggers and transactions.
25. Day 25: Windows Function
Day 26-30: Real-World Projects
26. Day 26: SQL Project-1
27. Day 27: SQL Project-2
28. Day 28: SQL Project-3
29. Day 29: Practice questions set
30. Day 30: Final review and practice, explore advanced topics in depth, or work on a personal project.
Like for more
Hope it helps :)
❤18👍2
If you are trying to transition into the data analytics domain and getting started with SQL, focus on the most useful concept that will help you solve the majority of the problems, and then try to learn the rest of the topics:
👉🏻 Basic Aggregation function:
1️⃣ AVG
2️⃣ COUNT
3️⃣ SUM
4️⃣ MIN
5️⃣ MAX
👉🏻 JOINS
1️⃣ Left
2️⃣ Inner
3️⃣ Self (Important, Practice questions on self join)
👉🏻 Windows Function (Important)
1️⃣ Learn how partitioning works
2️⃣ Learn the different use cases where Ranking/Numbering Functions are used? ( ROW_NUMBER,RANK, DENSE_RANK, NTILE)
3️⃣ Use Cases of LEAD & LAG functions
4️⃣ Use cases of Aggregate window functions
👉🏻 GROUP BY
👉🏻 WHERE vs HAVING
👉🏻 CASE STATEMENT
👉🏻 UNION vs Union ALL
👉🏻 LOGICAL OPERATORS
Other Commonly used functions:
👉🏻 IFNULL
👉🏻 COALESCE
👉🏻 ROUND
👉🏻 Working with Date Functions
1️⃣ EXTRACTING YEAR/MONTH/WEEK/DAY
2️⃣ Calculating date differences
👉🏻CTE
👉🏻Views & Triggers (optional)
Here is an amazing resources to learn & practice SQL: https://bit.ly/3FxxKPz
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
👉🏻 Basic Aggregation function:
1️⃣ AVG
2️⃣ COUNT
3️⃣ SUM
4️⃣ MIN
5️⃣ MAX
👉🏻 JOINS
1️⃣ Left
2️⃣ Inner
3️⃣ Self (Important, Practice questions on self join)
👉🏻 Windows Function (Important)
1️⃣ Learn how partitioning works
2️⃣ Learn the different use cases where Ranking/Numbering Functions are used? ( ROW_NUMBER,RANK, DENSE_RANK, NTILE)
3️⃣ Use Cases of LEAD & LAG functions
4️⃣ Use cases of Aggregate window functions
👉🏻 GROUP BY
👉🏻 WHERE vs HAVING
👉🏻 CASE STATEMENT
👉🏻 UNION vs Union ALL
👉🏻 LOGICAL OPERATORS
Other Commonly used functions:
👉🏻 IFNULL
👉🏻 COALESCE
👉🏻 ROUND
👉🏻 Working with Date Functions
1️⃣ EXTRACTING YEAR/MONTH/WEEK/DAY
2️⃣ Calculating date differences
👉🏻CTE
👉🏻Views & Triggers (optional)
Here is an amazing resources to learn & practice SQL: https://bit.ly/3FxxKPz
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤5
Python for Data Analysis: Must-Know Libraries 👇👇
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
🔥 Essential Python Libraries for Data Analysis:
✅ Pandas – The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
📌 Example: Loading a CSV file and displaying the first 5 rows:
✅ NumPy – Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
📌 Example: Creating an array and performing basic operations:
✅ Matplotlib & Seaborn – These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
📌 Example: Creating a basic bar chart:
✅ Scikit-Learn – A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
✅ OpenPyXL – Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
💡 Challenge for You!
Try writing a Python noscript that:
1️⃣ Reads a CSV file
2️⃣ Cleans missing data
3️⃣ Creates a simple visualization
React with ♥️ if you want me to post the noscript for above challenge! ⬇️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
🔥 Essential Python Libraries for Data Analysis:
✅ Pandas – The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
📌 Example: Loading a CSV file and displaying the first 5 rows:
import pandas as pd df = pd.read_csv('data.csv') print(df.head()) ✅ NumPy – Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
📌 Example: Creating an array and performing basic operations:
import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average
✅ Matplotlib & Seaborn – These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
📌 Example: Creating a basic bar chart:
import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show()
✅ Scikit-Learn – A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
✅ OpenPyXL – Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
💡 Challenge for You!
Try writing a Python noscript that:
1️⃣ Reads a CSV file
2️⃣ Cleans missing data
3️⃣ Creates a simple visualization
React with ♥️ if you want me to post the noscript for above challenge! ⬇️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤5
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝘃𝘀 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁 𝘃𝘀 𝗕𝘂𝘀𝗶𝗻𝗲𝘀𝘀 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 — 𝗪𝗵𝗶𝗰𝗵 𝗣𝗮𝘁𝗵 𝗶𝘀 𝗥𝗶𝗴𝗵𝘁 𝗳𝗼𝗿 𝗬𝗼𝘂? 🤔
In today’s data-driven world, career clarity can make all the difference. Whether you’re starting out in analytics, pivoting into data science, or aligning business with data as an analyst — understanding the core responsibilities, skills, and tools of each role is crucial.
🔍 Here’s a quick breakdown from a visual I often refer to when mentoring professionals:
🔹 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁
• Focus: Analyzing historical data to inform decisions.
• Skills: SQL, basic stats, data visualization, reporting.
• Tools: Excel, Tableau, Power BI, SQL.
🔹 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁
• Focus: Predictive modeling, ML, complex data analysis.
• Skills: Programming, ML, deep learning, stats.
• Tools: Python, R, TensorFlow, Scikit-Learn, Spark.
🔹 𝗕𝘂𝘀𝗶𝗻𝗲𝘀𝘀 𝗔𝗻𝗮𝗹𝘆𝘀𝘁
• Focus: Bridging business needs with data insights.
• Skills: Communication, stakeholder management, process modeling.
• Tools: Microsoft Office, BI tools, business process frameworks.
👉 𝗠𝘆 𝗔𝗱𝘃𝗶𝗰𝗲:
Start with what interests you the most and aligns with your current strengths. Are you business-savvy? Start as a Business Analyst. Love solving puzzles with data?
Explore Data Analyst. Want to build models and uncover deep insights? Head into Data Science.
🔗 𝗧𝗮𝗸𝗲 𝘁𝗶𝗺𝗲 𝘁𝗼 𝘀𝗲𝗹𝗳-𝗮𝘀𝘀𝗲𝘀𝘀 𝗮𝗻𝗱 𝗰𝗵𝗼𝗼𝘀𝗲 𝗮 𝗽𝗮𝘁𝗵 𝘁𝗵𝗮𝘁 𝗲𝗻𝗲𝗿𝗴𝗶𝘇𝗲𝘀 𝘆𝗼𝘂, not just one that’s trending.
In today’s data-driven world, career clarity can make all the difference. Whether you’re starting out in analytics, pivoting into data science, or aligning business with data as an analyst — understanding the core responsibilities, skills, and tools of each role is crucial.
🔍 Here’s a quick breakdown from a visual I often refer to when mentoring professionals:
🔹 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁
• Focus: Analyzing historical data to inform decisions.
• Skills: SQL, basic stats, data visualization, reporting.
• Tools: Excel, Tableau, Power BI, SQL.
🔹 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁
• Focus: Predictive modeling, ML, complex data analysis.
• Skills: Programming, ML, deep learning, stats.
• Tools: Python, R, TensorFlow, Scikit-Learn, Spark.
🔹 𝗕𝘂𝘀𝗶𝗻𝗲𝘀𝘀 𝗔𝗻𝗮𝗹𝘆𝘀𝘁
• Focus: Bridging business needs with data insights.
• Skills: Communication, stakeholder management, process modeling.
• Tools: Microsoft Office, BI tools, business process frameworks.
👉 𝗠𝘆 𝗔𝗱𝘃𝗶𝗰𝗲:
Start with what interests you the most and aligns with your current strengths. Are you business-savvy? Start as a Business Analyst. Love solving puzzles with data?
Explore Data Analyst. Want to build models and uncover deep insights? Head into Data Science.
🔗 𝗧𝗮𝗸𝗲 𝘁𝗶𝗺𝗲 𝘁𝗼 𝘀𝗲𝗹𝗳-𝗮𝘀𝘀𝗲𝘀𝘀 𝗮𝗻𝗱 𝗰𝗵𝗼𝗼𝘀𝗲 𝗮 𝗽𝗮𝘁𝗵 𝘁𝗵𝗮𝘁 𝗲𝗻𝗲𝗿𝗴𝗶𝘇𝗲𝘀 𝘆𝗼𝘂, not just one that’s trending.
❤5
SQL Basics for Data Analysts
SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.
1️⃣ Understanding Databases & Tables
Databases store structured data in tables.
Tables contain rows (records) and columns (fields).
Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).
2️⃣ Basic SQL Commands
Let's start with some fundamental queries:
🔹 SELECT – Retrieve Data
🔹 WHERE – Filter Data
🔹 ORDER BY – Sort Data
🔹 LIMIT – Restrict Number of Results
🔹 DISTINCT – Remove Duplicates
Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.
You can find free SQL Resources here
👇👇
https://news.1rj.ru/str/mysqldata
Like this post if you want me to continue covering all the topics! 👍❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
#sql
SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.
1️⃣ Understanding Databases & Tables
Databases store structured data in tables.
Tables contain rows (records) and columns (fields).
Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).
2️⃣ Basic SQL Commands
Let's start with some fundamental queries:
🔹 SELECT – Retrieve Data
SELECT * FROM employees; -- Fetch all columns from 'employees' table SELECT name, salary FROM employees; -- Fetch specific columns
🔹 WHERE – Filter Data
SELECT * FROM employees WHERE department = 'Sales'; -- Filter by department SELECT * FROM employees WHERE salary > 50000; -- Filter by salary
🔹 ORDER BY – Sort Data
SELECT * FROM employees ORDER BY salary DESC; -- Sort by salary (highest first) SELECT name, hire_date FROM employees ORDER BY hire_date ASC; -- Sort by hire date (oldest first)
🔹 LIMIT – Restrict Number of Results
SELECT * FROM employees LIMIT 5; -- Fetch only 5 rows SELECT * FROM employees WHERE department = 'HR' LIMIT 10; -- Fetch first 10 HR employees
🔹 DISTINCT – Remove Duplicates
SELECT DISTINCT department FROM employees; -- Show unique departments
Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.
You can find free SQL Resources here
👇👇
https://news.1rj.ru/str/mysqldata
Like this post if you want me to continue covering all the topics! 👍❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
#sql
❤8🎉1
Essential Skills Excel for Data Analysts 🚀
1️⃣ Data Cleaning & Transformation
Remove Duplicates – Ensure unique records.
Find & Replace – Quick data modifications.
Text Functions – TRIM, LEN, LEFT, RIGHT, MID, PROPER.
Data Validation – Restrict input values.
2️⃣ Data Analysis & Manipulation
Sorting & Filtering – Organize and extract key insights.
Conditional Formatting – Highlight trends, outliers.
Pivot Tables – Summarize large datasets efficiently.
Power Query – Automate data transformation.
3️⃣ Essential Formulas & Functions
Lookup Functions – VLOOKUP, HLOOKUP, XLOOKUP, INDEX-MATCH.
Logical Functions – IF, AND, OR, IFERROR, IFS.
Aggregation Functions – SUM, AVERAGE, MIN, MAX, COUNT, COUNTA.
Text Functions – CONCATENATE, TEXTJOIN, SUBSTITUTE.
4️⃣ Data Visualization
Charts & Graphs – Bar, Line, Pie, Scatter, Histogram.
Sparklines – Miniature charts inside cells.
Conditional Formatting – Color scales, data bars.
Dashboard Creation – Interactive and dynamic reports.
5️⃣ Advanced Excel Techniques
Array Formulas – Dynamic calculations with multiple values.
Power Pivot & DAX – Advanced data modeling.
What-If Analysis – Goal Seek, Scenario Manager.
Macros & VBA – Automate repetitive tasks.
6️⃣ Data Import & Export
CSV & TXT Files – Import and clean raw data.
Power Query – Connect to databases, web sources.
Exporting Reports – PDF, CSV, Excel formats.
Here you can find some free Excel books & useful resources: https://news.1rj.ru/str/excel_data
Hope it helps :)
#dataanalyst
1️⃣ Data Cleaning & Transformation
Remove Duplicates – Ensure unique records.
Find & Replace – Quick data modifications.
Text Functions – TRIM, LEN, LEFT, RIGHT, MID, PROPER.
Data Validation – Restrict input values.
2️⃣ Data Analysis & Manipulation
Sorting & Filtering – Organize and extract key insights.
Conditional Formatting – Highlight trends, outliers.
Pivot Tables – Summarize large datasets efficiently.
Power Query – Automate data transformation.
3️⃣ Essential Formulas & Functions
Lookup Functions – VLOOKUP, HLOOKUP, XLOOKUP, INDEX-MATCH.
Logical Functions – IF, AND, OR, IFERROR, IFS.
Aggregation Functions – SUM, AVERAGE, MIN, MAX, COUNT, COUNTA.
Text Functions – CONCATENATE, TEXTJOIN, SUBSTITUTE.
4️⃣ Data Visualization
Charts & Graphs – Bar, Line, Pie, Scatter, Histogram.
Sparklines – Miniature charts inside cells.
Conditional Formatting – Color scales, data bars.
Dashboard Creation – Interactive and dynamic reports.
5️⃣ Advanced Excel Techniques
Array Formulas – Dynamic calculations with multiple values.
Power Pivot & DAX – Advanced data modeling.
What-If Analysis – Goal Seek, Scenario Manager.
Macros & VBA – Automate repetitive tasks.
6️⃣ Data Import & Export
CSV & TXT Files – Import and clean raw data.
Power Query – Connect to databases, web sources.
Exporting Reports – PDF, CSV, Excel formats.
Here you can find some free Excel books & useful resources: https://news.1rj.ru/str/excel_data
Hope it helps :)
#dataanalyst
❤5👍1🔥1