Data Analytics – Telegram
Data Analytics
108K subscribers
126 photos
2 files
793 links
Perfect channel to learn Data Analytics

Learn SQL, Python, Alteryx, Tableau, Power BI and many more

For Promotions: @coderfun @love_data
Download Telegram
🖥 SQL Commands - essentials
9
🚀 Complete Roadmap to Become a Data Scientist in 5 Months

📅 Week 1-2: Fundamentals
Day 1-3: Introduction to Data Science, its applications, and roles.
Day 4-7: Brush up on Python programming 🐍.
Day 8-10: Learn basic statistics 📊 and probability 🎲.

🔍 Week 3-4: Data Manipulation & Visualization
📝 Day 11-15: Master Pandas for data manipulation.
📈 Day 16-20: Learn Matplotlib & Seaborn for data visualization.

🤖 Week 5-6: Machine Learning Foundations
🔬 Day 21-25: Introduction to scikit-learn.
📊 Day 26-30: Learn Linear & Logistic Regression.

🏗 Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
📌 Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.

🧠 Week 9-10: Deep Learning
🤖 Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
📸 Day 46-50: Learn CNNs & RNNs for image & text data.

🏛 Week 11-12: Data Engineering
🗄 Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.

📊 Week 13-14: Model Evaluation & Optimization
📏 Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
📉 Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).

🏗 Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).

🚀 Week 17-18: Deployment & Production
🛠 Day 81-85: Deploy models using Flask or FastAPI.
📦 Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).

🎯 Week 19-20: Specialization
📝 Day 91-95: Choose NLP or Computer Vision, based on your interest.

🏆 Week 21-22: Projects & Portfolio
📂 Day 96-100: Work on Personal Data Science Projects.

💬 Week 23-24: Soft Skills & Networking
🎤 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.

🎯 Week 25-26: Interview Preparation
💻 Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
📂 Day 116-120: Review your projects & prepare for discussions.

👨‍💻 Week 27-28: Apply for Jobs
📩 Day 121-125: Start applying for Entry-Level Data Scientist positions.

🎤 Week 29-30: Interviews
📝 Day 126-130: Attend Interviews & Practice Whiteboard Problems.

🔄 Week 31-32: Continuous Learning
📰 Day 131-135: Stay updated with the Latest Data Science Trends.

🏆 Week 33-34: Accepting Offers
📝 Day 136-140: Evaluate job offers & Negotiate Your Salary.

🏢 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!

🎉 Enjoy Learning & Build Your Dream Career in Data Science! 🚀🔥
10👍2
Step-by-step guide to become a Data Analyst in 2025📊

1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.

2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.

3. Get Formal Education or Certification:
A bachelor’s degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.

4. Build Hands-on Experience:
Work on real-world projects—use Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.

5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.

6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detail—these are just as important as technical skills.

7. Apply for Entry-Level Jobs:
Look for roles like “Junior Data Analyst” or “Business Analyst.” Tailor your resume to highlight your skills and portfolio.

8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.

React ❤️ for more
11🥰1
Data Analytics Roadmap for Freshers in 2025 🚀📊

1️⃣ Understand What a Data Analyst Does
🔍 Analyze data, find insights, create dashboards, support business decisions.

2️⃣ Start with Excel
📈 Learn:
– Basic formulas
– Charts & Pivot Tables
– Data cleaning
💡 Excel is still the #1 tool in many companies.

3️⃣ Learn SQL
🧩 SQL helps you pull and analyze data from databases.
Start with:
– SELECT, WHERE, JOIN, GROUP BY
🛠️ Practice on platforms like W3Schools or Mode Analytics.

4️⃣ Pick a Programming Language
🐍 Start with Python (easier) or R
– Learn pandas, matplotlib, numpy
– Do small projects (e.g. analyze sales data)

5️⃣ Data Visualization Tools
📊 Learn:
– Power BI or Tableau
– Build simple dashboards
💡 Start with free versions or YouTube tutorials.

6️⃣ Practice with Real Data
🔍 Use sites like Kaggle or Data.gov
– Clean, analyze, visualize
– Try small case studies (sales report, customer trends)

7️⃣ Create a Portfolio
💻 Share projects on:
– GitHub
– Notion or a simple website
📌 Add visuals + brief explanations of your insights.

8️⃣ Improve Soft Skills
🗣️ Focus on:
– Presenting data in simple words
– Asking good questions
– Thinking critically about patterns

9️⃣ Certifications to Stand Out
🎓 Try:
– Google Data Analytics (Coursera)
– IBM Data Analyst
– LinkedIn Learning basics

🔟 Apply for Internships & Entry Jobs
🎯 Titles to look for:
– Data Analyst (Intern)
– Junior Analyst
– Business Analyst

💬 React ❤️ for more!
14👍2
🚀 Excel vs SQL vs Python (Pandas):

1️⃣ Filtering Data
↳ Excel: =FILTER(A2:D100, B2:B100>50) (Excel 365 users)
↳ SQL: SELECT * FROM table WHERE column > 50;
↳ Python: df_filtered = df[df['column'] > 50]

2️⃣ Sorting Data
↳ Excel: Data → Sort (or =SORT(A2:A100, 1, TRUE))
↳ SQL: SELECT * FROM table ORDER BY column ASC;
↳ Python: df_sorted = df.sort_values(by="column")

3️⃣ Counting Rows
↳ Excel: =COUNTA(A:A)
↳ SQL: SELECT COUNT(*) FROM table;
↳ Python: row_count = len(df)

4️⃣ Removing Duplicates
↳ Excel: Data → Remove Duplicates
↳ SQL: SELECT DISTINCT * FROM table;
↳ Python: df_unique = df.drop_duplicates()

5️⃣ Joining Tables
↳ Excel: Power Query → Merge Queries (or VLOOKUP/XLOOKUP)
↳ SQL: SELECT * FROM table1 JOIN table2 ON table1.id = table2.id;
↳ Python: df_merged = pd.merge(df1, df2, on="id")

6️⃣ Ranking Data
↳ Excel: =RANK.EQ(A2, $A$2:$A$100)
↳ SQL: SELECT column, RANK() OVER (ORDER BY column DESC) AS rank FROM table;
↳ Python: df["rank"] = df["column"].rank(method="min", ascending=False)

7️⃣ Moving Average Calculation
↳ Excel: =AVERAGE(B2:B4) (manually for rolling window)
↳ SQL: SELECT date, AVG(value) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM table;
↳ Python: df["moving_avg"] = df["value"].rolling(window=3).mean()

8️⃣ Running Total
↳ Excel: =SUM($B$2:B2) (drag down)
↳ SQL: SELECT date, SUM(value) OVER (ORDER BY date) AS running_total FROM table;
↳ Python: df["running_total"] = df["value"].cumsum()
22👍1🔥1
How do analysts use SQL in a company?

SQL is every data analyst’s superpower! Here's how they use it in the real world:

Extract Data

Pull data from multiple tables to answer business questions.

Example:

SELECT name, revenue FROM sales WHERE region = 'North America';


(P.S. Avoid SELECT *—your future self (and the database) will thank you!)


Clean & Transform

Use SQL functions to clean raw data.

Think TRIM(), COALESCE(), CAST()—like giving data a fresh haircut.


Summarize & Analyze

Group and aggregate to spot trends and patterns.

GROUP BY, SUM(), AVG() – your best friends for quick insights.


Build Dashboards

Feed SQL queries into Power BI, Tableau, or Excel to create visual stories that make data talk.

Run A/B Tests

Evaluate product changes and campaigns by comparing user groups.

SQL makes sure your decisions are backed by data, not just gut feeling.


Use Views & CTEs

Simplify complex queries with Views and Common Table Expressions.

Clean, reusable, and boss-approved.


Drive Decisions

SQL powers decisions across Marketing, Product, Sales, and Finance.

When someone asks “What’s working?”—you’ve got the answers.


And remember: write smart queries, not lazy ones. Say no to SELECT * unless you really mean it!

Hit ♥️ if you want me to share more real-world examples to make data analytics easier to understand!

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
8
Complete roadmap to learn Python for data analysis

Step 1: Fundamentals of Python

1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)

2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions

3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions

4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)

Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)

2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully

3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation

Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations

2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data

3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn

Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering

2. Exploratory Data Analysis (EDA)
- Denoscriptive statistics
- Data visualization techniques
- Identifying patterns and outliers

3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions

Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models

2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models

3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)

Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects

2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects

👨‍💻 FREE Resources to Learn & Practice Python 

1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://news.1rj.ru/str/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://news.1rj.ru/str/pythonfreebootcamp/134
7. https://news.1rj.ru/str/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://news.1rj.ru/str/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://news.1rj.ru/str/pythonspecialist/33

Join @free4unow_backup for more free resources

ENJOY LEARNING 👍👍
9
SQL (Structured Query Language) is the universal language of databases. Whether you're analyzing sales data, optimizing marketing campaigns, or tracking user behavior, SQL is your go-to tool for:

Accessing and managing data efficiently
Writing queries to extract insights
Building a strong foundation for advanced tools like Python, R, or Power BI
In short, SQL is the bridge between raw data and actionable insights. 🌉

SQL Topics to Learn for Data Analyst/Business Analyst Roles

1. Basic:
* SELECT statements
* WHERE clause
* JOINs (INNER, LEFT, RIGHT, FULL)
* GROUP BY and HAVING
* ORDER BY
* Basic Aggregate Functions (COUNT, SUM, AVG, MIN, MAX)

2. Intermediate:
* Subqueries
* CASE statements
* UNION and UNION ALL
* Common Table Expressions (CTEs)
* Window Functions (ROW_NUMBER, RANK, DENSE_RANK, OVER)
* Data Manipulation (INSERT, UPDATE, DELETE)
* Indexes and Performance Tuning

3. Advanced:
* Advanced Window Functions (LEAD, LAG, NTILE)
* Complex Subqueries and Correlated Subqueries
* Advanced Performance Tuning

SQL is not just a skill—it’s the foundation of your data career. 🌟

Here you can find essential SQL Interview Resources👇
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Like this post if you need more 👍❤️

Hope it helps :)
7
Want to become a Data Scientist?

Here’s a quick roadmap with essential concepts:

1. Mathematics & Statistics

Linear Algebra: Matrix operations, eigenvalues, eigenvectors, and decomposition, which are crucial for machine learning.

Probability & Statistics: Hypothesis testing, probability distributions, Bayesian inference, confidence intervals, and statistical significance.

Calculus: Derivatives, integrals, and gradients, especially partial derivatives, which are essential for understanding model optimization.


2. Programming

Python or R: Choose a primary programming language for data science.

Python: Libraries like NumPy, Pandas for data manipulation, and Scikit-Learn for machine learning.

R: Especially popular in academia and finance, with libraries like dplyr and ggplot2 for data manipulation and visualization.


SQL: Master querying and database management, essential for accessing, joining, and filtering large datasets.


3. Data Wrangling & Preprocessing

Data Cleaning: Handle missing values, outliers, duplicates, and data formatting.
Feature Engineering: Create meaningful features, handle categorical variables, and apply transformations (scaling, encoding, etc.).
Exploratory Data Analysis (EDA): Visualize data distributions, correlations, and trends to generate hypotheses and insights.


4. Data Visualization

Python Libraries: Use Matplotlib, Seaborn, and Plotly to visualize data.
Tableau or Power BI: Learn interactive visualization tools for building dashboards.
Storytelling: Develop skills to interpret and present data in a meaningful way to stakeholders.


5. Machine Learning

Supervised Learning: Understand algorithms like Linear Regression, Logistic Regression, Decision Trees, Random Forest, Gradient Boosting, and Support Vector Machines (SVM).
Unsupervised Learning: Study clustering (K-means, DBSCAN) and dimensionality reduction (PCA, t-SNE).
Evaluation Metrics: Understand accuracy, precision, recall, F1-score for classification and RMSE, MAE for regression.


6. Advanced Machine Learning & Deep Learning

Neural Networks: Understand the basics of neural networks and backpropagation.
Deep Learning: Get familiar with Convolutional Neural Networks (CNNs) for image processing and Recurrent Neural Networks (RNNs) for sequential data.
Transfer Learning: Apply pre-trained models for specific use cases.
Frameworks: Use TensorFlow Keras for building deep learning models.


7. Natural Language Processing (NLP)

Text Preprocessing: Tokenization, stemming, lemmatization, stop-word removal.
NLP Techniques: Understand bag-of-words, TF-IDF, and word embeddings (Word2Vec, GloVe).
NLP Models: Work with recurrent neural networks (RNNs), transformers (BERT, GPT) for text classification, sentiment analysis, and translation.


8. Big Data Tools (Optional)

Distributed Data Processing: Learn Hadoop and Spark for handling large datasets. Use Google BigQuery for big data storage and processing.


9. Data Science Workflows & Pipelines (Optional)

ETL & Data Pipelines: Extract, Transform, and Load data using tools like Apache Airflow for automation. Set up reproducible workflows for data transformation, modeling, and monitoring.
Model Deployment: Deploy models in production using Flask, FastAPI, or cloud services (AWS SageMaker, Google AI Platform).


10. Model Validation & Tuning

Cross-Validation: Techniques like K-fold cross-validation to avoid overfitting.
Hyperparameter Tuning: Use Grid Search, Random Search, and Bayesian Optimization to optimize model performance.
Bias-Variance Trade-off: Understand how to balance bias and variance in models for better generalization.


11. Time Series Analysis

Statistical Models: ARIMA, SARIMA, and Holt-Winters for time-series forecasting.
Time Series: Handle seasonality, trends, and lags. Use LSTMs or Prophet for more advanced time-series forecasting.


12. Experimentation & A/B Testing

Experiment Design: Learn how to set up and analyze controlled experiments.
A/B Testing: Statistical techniques for comparing groups & measuring the impact of changes.

ENJOY LEARNING 👍👍

#datascience
9
Essential Python and SQL topics for data analysts 😄👇

Python Topics:

1. Data Structures
   - Lists, Tuples, and Dictionaries
   - NumPy Arrays for numerical data

2. Data Manipulation
   - Pandas DataFrames for structured data
   - Data Cleaning and Preprocessing techniques
   - Data Transformation and Reshaping

3. Data Visualization
   - Matplotlib for basic plotting
   - Seaborn for statistical visualizations
   - Plotly for interactive charts

4. Statistical Analysis
   - Denoscriptive Statistics
   - Hypothesis Testing
   - Regression Analysis

5. Machine Learning
   - Scikit-Learn for machine learning models
   - Model Building, Training, and Evaluation
   - Feature Engineering and Selection

6. Time Series Analysis
   - Handling Time Series Data
   - Time Series Forecasting
   - Anomaly Detection

7. Python Fundamentals
   - Control Flow (if statements, loops)
   - Functions and Modular Code
   - Exception Handling
   - File

SQL Topics:

1. SQL Basics
- SQL Syntax
- SELECT Queries
- Filters

2. Data Retrieval
- Aggregation Functions (SUM, AVG, COUNT)
- GROUP BY

3. Data Filtering
- WHERE Clause
- ORDER BY

4. Data Joins
- JOIN Operations
- Subqueries

5. Advanced SQL
- Window Functions
- Indexing
- Performance Optimization

6. Database Management
- Connecting to Databases
- SQLAlchemy

7. Database Design
- Data Types
- Normalization

Remember, it's highly likely that you won't know all these concepts from the start. Data analysis is a journey where the more you learn, the more you grow. Embrace the learning process, and your skills will continually evolve and expand. Keep up the great work!

Python Resources - https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

SQL Resources - https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Hope it helps :)
4
Complete step-by-step syllabus of #Excel for Data Analytics

Introduction to Excel for Data Analytics:
Overview of Excel's capabilities for data analysis
Introduction to Excel's interface: ribbons, worksheets, cells, etc.
Differences between Excel desktop version and Excel Online (web version)

Data Import and Preparation:
Importing data from various sources: CSV, text files, databases, web queries, etc.
Data cleaning and manipulation techniques: sorting, filtering, removing duplicates, etc.
Data types and formatting in Excel
Data validation and error handling

Data Analysis Techniques in Excel:
Basic formulas and functions: SUM, AVERAGE, COUNT, IF, VLOOKUP, etc.
Advanced functions for data analysis: INDEX-MATCH, SUMIFS, COUNTIFS, etc.
PivotTables and PivotCharts for summarizing and analyzing data
Advanced data analysis tools: Goal Seek, Solver, What-If Analysis, etc.

Data Visualization in Excel:
Creating basic charts: column, bar, line, pie, scatter, etc.
Formatting and customizing charts for better visualization
Using sparklines for visualizing trends in data
Creating interactive dashboards with slicers and timelines

Advanced Data Analysis Features:
Data modeling with Excel Tables and Relationships
Using Power Query for data transformation and cleaning
Introduction to Power Pivot for data modeling and DAX calculations
Advanced charting techniques: combination charts, waterfall charts, etc.

Statistical Analysis in Excel:
Denoscriptive statistics: mean, median, mode, standard deviation, etc.
Hypothesis testing: t-tests, chi-square tests, ANOVA, etc.
Regression analysis and correlation
Forecasting techniques: moving averages, exponential smoothing, etc.

Data Visualization Tools in Excel:
Introduction to Excel add-ins for enhanced visualization (e.g., Power Map, Power View)
Creating interactive reports with Excel add-ins
Introduction to Excel Data Model for handling large datasets

Real-world Projects and Case Studies:
Analyzing real-world datasets
Solving business problems with Excel
Portfolio development showcasing Excel skills

Free Resources: https://news.1rj.ru/str/excel_data

Hope this helps you 😊
5🥰1👏1
Hey guys,

I have curated some best WhatsApp Channels for free education 👇👇

Free Udemy Courses with Certificate: https://whatsapp.com/channel/0029VbB8ROL4inogeP9o8E1l

SQL Programming: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Python for Data Science: https://whatsapp.com/channel/0029VauCKUI6WaKrgTHrRD0i

Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

Python Programming: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Tableau: https://whatsapp.com/channel/0029VasYW1V5kg6z4EHOHG1t

Excel: https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i

Remote Jobs: https://whatsapp.com/channel/0029Vb1RrFuC1Fu3E0aiac2E

Frontend Development: https://whatsapp.com/channel/0029VaxfCpv2v1IqQjv6Ke0r

Software Engineer Jobs: https://whatsapp.com/channel/0029VatL9a22kNFtPtLApJ2L

Machine Learning: https://whatsapp.com/channel/0029VawtYcJ1iUxcMQoEuP0O

English Speaking & Communication Skills: https://whatsapp.com/channel/0029VaiaucV4NVik7Fx6HN2n

GitHub: https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43

Artificial Intelligence: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E

Python Projects: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

Data Science Projects: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z

Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502

Data Engineers: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

AI Tools: https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B

Javanoscript: https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32

Cybersecurity: https://whatsapp.com/channel/0029VancSnGG8l5KQYOOyL1T

Health & Fitness: https://whatsapp.com/channel/0029VazUhie6RGJIYNbHCt3B

Business & Startup Ideas: https://whatsapp.com/channel/0029Vb2N3YA2phHJfsMrHZ0b

Personality Development & Motivation: https://whatsapp.com/channel/0029VavaBiTDeON0O54Bca0q

Web Development Jobs: https://whatsapp.com/channel/0029Vb1raTiDjiOias5ARu2p

Python & AI Jobs: https://whatsapp.com/channel/0029VaxtmHsLikgJ2VtGbu1R

Generative AI: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U

Data Science Jobs: https://whatsapp.com/channel/0029VaxTMmQADTOA746w7U2P

ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23

Do react with ♥️ if you need more free resources

ENJOY LEARNING 👍👍
9👎1
SQL can be simple—if you learn it the smart way..



If you’re aiming to become a data analyst, mastering SQL is non-negotiable.
Here’s a smart roadmap to ace it:

1. Basics First: Understand data types, simple queries (SELECT, FROM, WHERE). Master basic filtering.

2. Joins & Relationships: Dive into INNER, LEFT, RIGHT joins. Practice combining tables to extract meaningful insights.

3. Aggregations & Functions: Get comfortable with COUNT, SUM, AVG, MAX, GROUP BY, and HAVING clauses. These are essential for summarizing data.

4. Subqueries & Nested Queries: Learn how to query within queries. This is powerful for handling complex datasets.

5. Window Functions: Explore ranking, cumulative sums, and sliding windows to work with running totals and moving averages.

6. Optimization: Study indexing and query optimization for faster, more efficient queries.

7. Real-World Scenarios: Apply your SQL knowledge to solve real-world business problems.

The journey may seem tough, but each step sharpens your skills and brings you closer to data analysis excellence. Stay consistent, practice regularly, and let SQL become your superpower! 💪

Here you can find essential SQL Interview Resources👇
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Like this post if you need more 👍❤️

Hope it helps :)
10
Quick SQL functions cheat sheet for beginners

Aggregate Functions

COUNT(*): Counts rows.

SUM(column): Total sum.

AVG(column): Average value.

MAX(column): Maximum value.

MIN(column): Minimum value.


String Functions

CONCAT(a, b, …): Concatenates strings.

SUBSTRING(s, start, length): Extracts part of a string.

UPPER(s) / LOWER(s): Converts string case.

TRIM(s): Removes leading/trailing spaces.


Date & Time Functions

CURRENT_DATE / CURRENT_TIME / CURRENT_TIMESTAMP: Current date/time.

EXTRACT(unit FROM date): Retrieves a date part (e.g., year, month).

DATE_ADD(date, INTERVAL n unit): Adds an interval to a date.


Numeric Functions

ROUND(num, decimals): Rounds to a specified decimal.

CEIL(num) / FLOOR(num): Rounds up/down.

ABS(num): Absolute value.

MOD(a, b): Returns the remainder.


Control Flow Functions

CASE: Conditional logic.

COALESCE(val1, val2, …): Returns the first non-null value.


Like for more free Cheatsheets ❤️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)

#dataanalytics
14
SQL Interview Questions with Answers

1. How to change a table name in SQL?
This is the command to change a table name in SQL:
ALTER TABLE table_name
RENAME TO new_table_name;
We will start off by giving the keywords ALTER TABLE, then we will follow it up by giving the original name of the table, after that, we will give in the keywords RENAME TO and finally, we will give the new table name.

2. How to use LIKE in SQL?
The LIKE operator checks if an attribute value matches a given string pattern. Here is an example of LIKE operator
SELECT * FROM employees WHERE first_name like ‘Steven’;
With this command, we will be able to extract all the records where the first name is like “Steven”.

3. If we drop a table, does it also drop related objects like constraints, indexes, columns, default, views and sorted procedures?
Yes, SQL server drops all related objects, which exists inside a table like constraints, indexes, columns, defaults etc. But dropping a table will not drop views and sorted procedures as they exist outside the table.

4. Explain SQL Constraints.
SQL Constraints are used to specify the rules of data type in a table. They can be specified while creating and altering the table. The following are the constraints in SQL: NOT NULL CHECK DEFAULT UNIQUE PRIMARY KEY FOREIGN KEY

React ❤️ for more
7👌2
🚀 Excel vs SQL vs Python (Pandas):

1️⃣ Filtering Data
↳ Excel: =FILTER(A2:D100, B2:B100>50) (Excel 365 users)
↳ SQL: SELECT * FROM table WHERE column > 50;
↳ Python: df_filtered = df[df['column'] > 50]

2️⃣ Sorting Data
↳ Excel: Data → Sort (or =SORT(A2:A100, 1, TRUE))
↳ SQL: SELECT * FROM table ORDER BY column ASC;
↳ Python: df_sorted = df.sort_values(by="column")

3️⃣ Counting Rows
↳ Excel: =COUNTA(A:A)
↳ SQL: SELECT COUNT(*) FROM table;
↳ Python: row_count = len(df)

4️⃣ Removing Duplicates
↳ Excel: Data → Remove Duplicates
↳ SQL: SELECT DISTINCT * FROM table;
↳ Python: df_unique = df.drop_duplicates()

5️⃣ Joining Tables
↳ Excel: Power Query → Merge Queries (or VLOOKUP/XLOOKUP)
↳ SQL: SELECT * FROM table1 JOIN table2 ON table1.id = table2.id;
↳ Python: df_merged = pd.merge(df1, df2, on="id")

6️⃣ Ranking Data
↳ Excel: =RANK.EQ(A2, $A$2:$A$100)
↳ SQL: SELECT column, RANK() OVER (ORDER BY column DESC) AS rank FROM table;
↳ Python: df["rank"] = df["column"].rank(method="min", ascending=False)

7️⃣ Moving Average Calculation
↳ Excel: =AVERAGE(B2:B4) (manually for rolling window)
↳ SQL: SELECT date, AVG(value) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM table;
↳ Python: df["moving_avg"] = df["value"].rolling(window=3).mean()

8️⃣ Running Total
↳ Excel: =SUM($B$2:B2) (drag down)
↳ SQL: SELECT date, SUM(value) OVER (ORDER BY date) AS running_total FROM table;
↳ Python: df["running_total"] = df["value"].cumsum()
8👍1
9 tips to get started with Data Analysis:

Learn Excel, SQL, and a programming language (Python or R)

Understand basic statistics and probability

Practice with real-world datasets (Kaggle, Data.gov)

Clean and preprocess data effectively

Visualize data using charts and graphs

Ask the right questions before diving into data

Use libraries like Pandas, NumPy, and Matplotlib

Focus on storytelling with data insights

Build small projects to apply what you learn

Data Science & Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING 👍👍
5
SQL Joins Simplified
1
SQL Zero to Hero
8👍7😁1
Commonly used Power BI DAX functions:

DATE AND TIME FUNCTIONS:
- CALENDAR
- DATEDIFF
- TODAY, DAY, MONTH, QUARTER, YEAR

AGGREGATE FUNCTIONS:
- SUM, SUMX, PRODUCT
- AVERAGE
- MIN, MAX
- COUNT
- COUNTROWS
- COUNTBLANK
- DISTINCTCOUNT

FILTER FUNCTIONS:
- CALCULATE
- FILTER
- ALL, ALLEXCEPT, ALLSELECTED, REMOVEFILTERS
- SELECTEDVALUE

TIME INTELLIGENCE FUNCTIONS:
- DATESBETWEEN
- DATESMTD, DATESQTD, DATESYTD
- SAMEPERIODLASTYEAR
- PARALLELPERIOD
- TOTALMTD, TOTALQTD, TOTALYTD

TEXT FUNCTIONS:
- CONCATENATE
- FORMAT
- LEN, LEFT, RIGHT

INFORMATION FUNCTIONS:
- HASONEVALUE, HASONEFILTER
- ISBLANK, ISERROR, ISEMPTY
- CONTAINS

LOGICAL FUNCTIONS:
- AND, OR, IF, NOT
- TRUE, FALSE
- SWITCH

RELATIONSHIP FUNCTIONS:
- RELATED
- USERRELATIONSHIP
- RELATEDTABLE

Remember, DAX is more about logic than the formulas.
5
Everyone thinks being a great data analyst is about advanced algorithms and complex dashboards.

But real data excellence comes from methodical habits that build trust and deliver real insights.

Here are 20 signs of a truly effective analyst 👇

They document every step of their analysis
➝ Clear notes make their work reproducible and trustworthy.

They check data quality before the analysis begins
➝ Garbage in = garbage out. Always validate first.

They use version control religiously
➝ Every code change is tracked. Nothing gets lost.

They explore data thoroughly before diving in
➝ Understanding context prevents costly misinterpretations.

They create automated noscripts for repetitive tasks
➝ Efficiency isn’t a luxury—it’s a necessity.

They maintain a reusable code library
➝ Smart analysts never solve the same problem twice.

They test assumptions with multiple validation methods
➝ One test isn’t enough; they triangulate confidence.

They organize project files logically
➝ Their work is navigable by anyone, not just themselves.

They seek peer reviews on critical work
➝ Fresh eyes catch blind spots.

They continuously absorb industry knowledge
➝ Learning never stops. Trends change too quickly.

They prioritize business-impacting projects
➝ Every analysis must drive real decisions.

They explain complex findings simply
➝ Technical brilliance is useless without clarity.

They write readable, well-commented code
➝ Their work is accessible to others, long after they're gone.

They maintain robust backup systems
➝ Data loss is never an option.

They learn from analytical mistakes
➝ Errors become stepping stones, not roadblocks.

They build strong stakeholder relationships
➝ Data is only valuable when people use it.

They break complex projects into manageable chunks
➝ Progress happens through disciplined, incremental work.

They handle sensitive data with proper security
➝ Compliance isn’t optional—it’s foundational.

They create visualizations that tell clear stories
➝ A chart without a narrative is just decoration.

They actively seek evidence against their conclusions
➝ Confirmation bias is their biggest enemy.

The best analysts aren’t the ones with the most tools—they’re the ones with the most rigorous practices.
11