Data Analytics – Telegram
Data Analytics
108K subscribers
129 photos
2 files
799 links
Perfect channel to learn Data Analytics

Learn SQL, Python, Alteryx, Tableau, Power BI and many more

For Promotions: @coderfun @love_data
Download Telegram
SQL Joins
10👍1
SQL Cheatsheet 📝

This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether you’re a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.

1. Database Basics
- CREATE DATABASE db_name;
- USE db_name;

2. Tables
- Create Table: CREATE TABLE table_name (col1 datatype, col2 datatype);
- Drop Table: DROP TABLE table_name;
- Alter Table: ALTER TABLE table_name ADD column_name datatype;

3. Insert Data
- INSERT INTO table_name (col1, col2) VALUES (val1, val2);

4. Select Queries
- Basic Select: SELECT * FROM table_name;
- Select Specific Columns: SELECT col1, col2 FROM table_name;
- Select with Condition: SELECT * FROM table_name WHERE condition;

5. Update Data
- UPDATE table_name SET col1 = value1 WHERE condition;

6. Delete Data
- DELETE FROM table_name WHERE condition;

7. Joins
- Inner Join: SELECT * FROM table1 INNER JOIN table2 ON table1.col = table2.col;
- Left Join: SELECT * FROM table1 LEFT JOIN table2 ON table1.col = table2.col;
- Right Join: SELECT * FROM table1 RIGHT JOIN table2 ON table1.col = table2.col;

8. Aggregations
- Count: SELECT COUNT(*) FROM table_name;
- Sum: SELECT SUM(col) FROM table_name;
- Group By: SELECT col, COUNT(*) FROM table_name GROUP BY col;

9. Sorting & Limiting
- Order By: SELECT * FROM table_name ORDER BY col ASC|DESC;
- Limit Results: SELECT * FROM table_name LIMIT n;

10. Indexes
- Create Index: CREATE INDEX idx_name ON table_name (col);
- Drop Index: DROP INDEX idx_name;

11. Subqueries
- SELECT * FROM table_name WHERE col IN (SELECT col FROM other_table);

12. Views
- Create View: CREATE VIEW view_name AS SELECT * FROM table_name;
- Drop View: DROP VIEW view_name;

Here you can find SQL Interview Resources👇
https://news.1rj.ru/str/DataSimplifier

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
7
Beware of any recruiter who asks for money for interview scheduling, certification, or references etc. This is a clear sign of a scam and a fake hiring process.

- No Payment Required: In the IT industry, you should never have to make any kind of payment to get hired. Legitimate companies and recruiters do not charge candidates for job opportunities.

- Third-Party Agencies: Even when you are working with third-party agencies, these agencies charge the employer (their clients), not you.

Red Flags to Identify Scams:

- Payment Requests: If a recruiter asks for money at any stage, it is likely a scam.

- Unverified Contacts: Be cautious if the recruiter’s contact information or company details cannot be verified.

- Pressure Tactics: Scammers often use urgency or pressure tactics to get you to pay quickly.

Always remember: never pay for a job opportunity. If a recruiter or agency asks for money, it is a scam. Stay away and protect yourself from fraudulent practices.
8👍4
Which of the following is the correct formula to find the sum of cells A1 to A10 in Excel?
Anonymous Quiz
6%
=ADD(A1:A10)
90%
=SUM(A1:A10)
1%
=PLUS(A1:A10)
2%
=TOTAL(A1:A10)
9
Which Excel feature allows you to rearrange rows based on the contents of a column?
Anonymous Poll
23%
Filtering
44%
Sorting
19%
Conditional Formatting
14%
Pivot Tables
5
Which symbol is used to make a cell reference absolute in Excel (so it doesn't change when you copy the formula)?
Anonymous Quiz
15%
&
15%
*
61%
$
8%
!
5👏2
𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 (𝗡𝗼 𝗦𝘁𝗿𝗶𝗻𝗴𝘀 𝗔𝘁𝘁𝗮𝗰𝗵𝗲𝗱)

𝗡𝗼 𝗳𝗮𝗻𝗰𝘆 𝗰𝗼𝘂𝗿𝘀𝗲𝘀, 𝗻𝗼 𝗰𝗼𝗻𝗱𝗶𝘁𝗶𝗼𝗻𝘀, 𝗷𝘂𝘀𝘁 𝗽𝘂𝗿𝗲 𝗹𝗲𝗮𝗿𝗻𝗶𝗻𝗴.

𝗛𝗲𝗿𝗲’𝘀 𝗵𝗼𝘄 𝘁𝗼 𝗯𝗲𝗰𝗼𝗺𝗲 𝗮 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘:

1️⃣ Python Programming for Data Science → Harvard’s CS50P
The best intro to Python for absolute beginners:
↬ Covers loops, data structures, and practical exercises.
↬ Designed to help you build foundational coding skills.

Link: https://cs50.harvard.edu/python/

https://news.1rj.ru/str/datasciencefun

2️⃣ Statistics & Probability → Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
↬ Clear, beginner-friendly videos.
↬ Exercises to test your skills.

Link: https://www.khanacademy.org/math/statistics-probability

https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O

3️⃣ Linear Algebra for Data Science → 3Blue1Brown
↬ Learn about matrices, vectors, and transformations.
↬ Essential for machine learning models.

Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr

4️⃣ SQL Basics → Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
↬ Writing queries, joins, and filtering data.
↬ Real-world datasets to practice.

Link: https://mode.com/sql-tutorial

https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

5️⃣ Data Visualization → freeCodeCamp
Learn to create stunning visualizations using Python libraries:
↬ Covers Matplotlib, Seaborn, and Plotly.
↬ Step-by-step projects included.

Link: https://www.youtube.com/watch?v=JLzTJhC2DZg

https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34

6️⃣ Machine Learning Basics → Google’s Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
↬ Learn supervised and unsupervised learning.
↬ Hands-on coding with TensorFlow.

Link: https://developers.google.com/machine-learning/crash-course

7️⃣ Deep Learning → Fast.ai’s Free Course
Fast.ai makes deep learning easy and accessible:
↬ Build neural networks with PyTorch.
↬ Learn by coding real projects.

Link: https://course.fast.ai/

8️⃣ Data Science Projects → Kaggle
↬ Compete in challenges to practice your skills.
↬ Great way to build your portfolio.

Link: https://www.kaggle.com/
8
Dear Data Analyst:

If you are learning Excel

Use this:
13👍5
Data Analytics Interview Questions with Answers

1. What are Query and Query language?

A query is nothing but a request sent to a database to retrieve data or information. The required data can be retrieved from a table or many tables in the database.

Query languages use various types of queries to retrieve data from databases. SQL, Datalog, and AQL are a few examples of query languages; however, SQL is known to be the widely used query language.



2. What are Superkey and candidate key?

A super key may be a single or a combination of keys that help to identify a record in a table. Know that Super keys can have one or more attributes, even though all the attributes are not necessary to identify the records.

A candidate key is the subset of Superkey, which can have one or more than one attributes to identify records in a table. Unlike Superkey, all the attributes of the candidate key must be helpful to identify the records.


3. What do you mean by buffer pool and mention its benefits?

A buffer pool in SQL is also known as a buffer cache. All the resources can store their cached data pages in a buffer pool. The size of the buffer pool can be defined during the configuration of an instance of SQL Server.
The following are the benefits of a buffer pool:

Increase in I/O performance
Reduction in I/O latency
Increase in transaction throughput
Increase in reading performance


4. What is the difference between Zero and NULL values in SQL?

When a field in a column doesn’t have any value, it is said to be having a NULL value. Simply put, NULL is the blank field in a table. It can be considered as an unassigned, unknown, or unavailable value. On the contrary, zero is a number, and it is an available, assigned, and known value.
8
Data Analyst Roadmap 📊

📂 Python Basics
📂 Numpy & Pandas
 ∟📂 Data Cleaning
  ∟📂 Data Visualization (Matplotlib, Seaborn)
   ∟📂 SQL for Data Analysis
    ∟📂 Excel & Google Sheets
     ∟📂 Statistics for Analysis
      ∟📂 BI Tools (Power BI / Tableau)
       ∟📂 Real-World Projects
        ∟ Apply for Data Analyst Roles

❤️ React for More!
19🔥4
Data Analytics isn't rocket science. It's just a different language.

Here's a beginner's guide to the world of data analytics:

1) Understand the fundamentals:
- Mathematics
- Statistics
- Technology

2) Learn the tools:
- SQL
- Python
- Excel (yes, it's still relevant!)

3) Understand the data:
- What do you want to measure?
- How are you measuring it?
- What metrics are important to you?

4) Data Visualization:
- A picture is worth a thousand words

5) Practice:
- There's no better way to learn than to do it yourself.

Data Analytics is a valuable skill that can help you make better decisions, understand your audience better, and ultimately grow your business.

It's never too late to start learning!
🔥86
🐍 How to Master Python for Data Analytics (Without Getting Overwhelmed!) 🧠

Python is powerful—but libraries, syntax, and endless tutorials can feel like too much.
Here’s a 5-step roadmap to go from beginner to confident data analyst 👇

🔹 Step 1: Get Comfortable with Python Basics (The Foundation)
Start small and build your logic.
Variables, Data Types, Operators
if-else, loops, functions
Lists, Tuples, Sets, Dictionaries

Use tools like: Jupyter Notebook, Google Colab, Replit
Practice basic problems on: HackerRank, Edabit

🔹 Step 2: Learn NumPy & Pandas (Your Analysis Engine)
These are non-negotiable for analysts.
NumPy → Arrays, broadcasting, math functions
Pandas → Series, DataFrames, filtering, sorting
Data cleaning, merging, handling nulls

Work with real CSV files and explore them hands-on!

🔹 Step 3: Master Data Visualization (Make Data Talk)
Good plots = Clear insights
Matplotlib → Line, Bar, Pie
Seaborn → Heatmaps, Countplots, Histograms
Customize colors, labels, noscripts

Build charts from Pandas data.

🔹 Step 4: Learn to Work with Real Data (APIs, Files, Web)
Read/write Excel, CSV, JSON
Connect to APIs with requests
Use modules like openpyxl, json, os, datetime

Optional: Web scraping with BeautifulSoup or Selenium

🔹 Step 5: Get Fluent in Data Analysis Projects
Exploratory Data Analysis (EDA)
Summary stats, correlation
(Optional) Basic machine learning with scikit-learn
Build real mini-projects: Sales report, COVID trends, Movie ratings

You don’t need 10 certifications—just 3 solid projects that prove your skills.
Keep it simple. Keep it real.

💬 Tap ❤️ for more!
16👍1🥰1
Some practical interview questions for an entry-level data analyst role in Power BI:

•  Data Import Scenario: Describe how you would import data from various sources (Excel,SQL Server, CSV) into Power BI.

•  Data Cleaning Exercise: In Power BI, how would you handle a dataset with missing values and inconsistent formats to prepare it for analysis?

•  Handling Large Datasets: If you're working with a very large dataset in Power BI that is causing performance issues, what strategies would you use to optimize the data processing?

•  Calculated Columns and Measures: Explain how you would use calculated columns and measures in Power BI to analyze year-over-year growth.

•  Data Modeling Case: You have sales data in one table and customer data in another. How would you create a data model in Power BI to analyze customer purchase behavior?

•  Visualizations Task: Describe your approach to visualizing sales data in Power BI to highlight trends over time across different product categories.

•  Dashboard Optimization: A Power BI dashboard is loading slowly. What steps would you take to diagnose and improve its performance?

•  Data Refresh Scheduling: How would you set up and manage automatic data refreshes for a weekly sales report in Power BI?

•  Row-Level Security: How would you implement user-level security in Power BI for a report that needs different access levels for various users?

•  Troubleshooting a DAX Calculation: If a DAX formula in Power BI is not returning the expected results, how would you go about troubleshooting it?

•  Integration with Other Tools: Describe a scenario where you integrated Power BI with another tool or service (like Excel, Azure, or a web API).

•  Interactive Reports Creation: How would you design a Power BI report that allows user interaction, such as using slicers or drill-down features?

•  Adapting to Data Source Changes: If there are structural changes in a primary data source (like addition or removal of columns), how would you update your Power BI reports and dashboards?

•  Sharing Reports: Explain how you would share a report with your team and set up access controls using Power BI Service.
•  SQL Queries in Power BI: How do you use SQL queries in Power BI for advanced data transformation or analysis?

•  Error Handling in Data Sources: How do you manage and resolve errors in data sources or calculations in Power BI?

•  Custom Visuals Usage: Have you used custom visuals in Power BI? Describe the scenario and the benefit

•  Collaboration in Power BI Projects: Discuss how you have worked with others on a Power BI project. What collaboration tools or features within Power BI did you utilize?

•  Performance Tuning: What steps do you take to ensure your Power BI reports are performing optimally when dealing with large datasets or complex calculations?

Power BI Interviews 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope you'll like it

Like this post if you need more resources like this 👍❤️
7
Must-know Pandas Functions for Data Analysis
8👏1
Data Analytics with Python 👆
8👏1
🗄️ SQL Developer Roadmap

📂 SQL Basics (SELECT, WHERE, ORDER BY)
📂 Joins (INNER, LEFT, RIGHT, FULL)
📂 Aggregate Functions (COUNT, SUM, AVG)
📂 Grouping Data (GROUP BY, HAVING)
📂 Subqueries & Nested Queries
📂 Data Modification (INSERT, UPDATE, DELETE)
📂 Database Design (Normalization, Keys)
📂 Indexing & Query Optimization
📂 Stored Procedures & Functions
📂 Transactions & Locks
📂 Views & Triggers
📂 Backup & Restore
📂 Working with NoSQL basics (optional)
📂 Real Projects & Practice
Apply for SQL Dev Roles

❤️ React for More!
22👏2
𝐒𝐐𝐋 𝐂𝐚𝐬𝐞 𝐒𝐭𝐮𝐝𝐢𝐞𝐬 𝐟𝐨𝐫 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰:

Join for more: https://news.1rj.ru/str/sqlanalyst

1. Danny’s Diner:
Restaurant analytics to understand the customer orders pattern.
Link: https://8weeksqlchallenge.com/case-study-1/

2. Pizza Runner
Pizza shop analytics to optimize the efficiency of the operation
Link: https://8weeksqlchallenge.com/case-study-2/

3. Foodie Fie
Subnoscription-based food content platform
Link: https://lnkd.in/gzB39qAT

4. Data Bank: That’s money
Analytics based on customer activities with the digital bank
Link: https://lnkd.in/gH8pKPyv

5. Data Mart: Fresh is Best
Analytics on Online supermarket
Link: https://lnkd.in/gC5bkcDf

6. Clique Bait: Attention capturing
Analytics on the seafood industry
Link: https://lnkd.in/ggP4JiYG

7. Balanced Tree: Clothing Company
Analytics on the sales performance of clothing store
Link: https://8weeksqlchallenge.com/case-study-7

8. Fresh segments: Extract maximum value
Analytics on online advertising
Link: https://8weeksqlchallenge.com/case-study-8
8