🐍 How to Master Python for Data Analytics (Without Getting Overwhelmed!) 🧠
Python is powerful—but libraries, syntax, and endless tutorials can feel like too much.
Here’s a 5-step roadmap to go from beginner to confident data analyst 👇
🔹 Step 1: Get Comfortable with Python Basics (The Foundation)
Start small and build your logic.
✅ Variables, Data Types, Operators
✅ if-else, loops, functions
✅ Lists, Tuples, Sets, Dictionaries
Use tools like: Jupyter Notebook, Google Colab, Replit
Practice basic problems on: HackerRank, Edabit
🔹 Step 2: Learn NumPy & Pandas (Your Analysis Engine)
These are non-negotiable for analysts.
✅ NumPy → Arrays, broadcasting, math functions
✅ Pandas → Series, DataFrames, filtering, sorting
✅ Data cleaning, merging, handling nulls
Work with real CSV files and explore them hands-on!
🔹 Step 3: Master Data Visualization (Make Data Talk)
Good plots = Clear insights
✅ Matplotlib → Line, Bar, Pie
✅ Seaborn → Heatmaps, Countplots, Histograms
✅ Customize colors, labels, noscripts
Build charts from Pandas data.
🔹 Step 4: Learn to Work with Real Data (APIs, Files, Web)
✅ Read/write Excel, CSV, JSON
✅ Connect to APIs with
✅ Use modules like
Optional: Web scraping with BeautifulSoup or Selenium
🔹 Step 5: Get Fluent in Data Analysis Projects
✅ Exploratory Data Analysis (EDA)
✅ Summary stats, correlation
✅ (Optional) Basic machine learning with
✅ Build real mini-projects: Sales report, COVID trends, Movie ratings
You don’t need 10 certifications—just 3 solid projects that prove your skills.
Keep it simple. Keep it real.
💬 Tap ❤️ for more!
Python is powerful—but libraries, syntax, and endless tutorials can feel like too much.
Here’s a 5-step roadmap to go from beginner to confident data analyst 👇
🔹 Step 1: Get Comfortable with Python Basics (The Foundation)
Start small and build your logic.
✅ Variables, Data Types, Operators
✅ if-else, loops, functions
✅ Lists, Tuples, Sets, Dictionaries
Use tools like: Jupyter Notebook, Google Colab, Replit
Practice basic problems on: HackerRank, Edabit
🔹 Step 2: Learn NumPy & Pandas (Your Analysis Engine)
These are non-negotiable for analysts.
✅ NumPy → Arrays, broadcasting, math functions
✅ Pandas → Series, DataFrames, filtering, sorting
✅ Data cleaning, merging, handling nulls
Work with real CSV files and explore them hands-on!
🔹 Step 3: Master Data Visualization (Make Data Talk)
Good plots = Clear insights
✅ Matplotlib → Line, Bar, Pie
✅ Seaborn → Heatmaps, Countplots, Histograms
✅ Customize colors, labels, noscripts
Build charts from Pandas data.
🔹 Step 4: Learn to Work with Real Data (APIs, Files, Web)
✅ Read/write Excel, CSV, JSON
✅ Connect to APIs with
requests ✅ Use modules like
openpyxl, json, os, datetimeOptional: Web scraping with BeautifulSoup or Selenium
🔹 Step 5: Get Fluent in Data Analysis Projects
✅ Exploratory Data Analysis (EDA)
✅ Summary stats, correlation
✅ (Optional) Basic machine learning with
scikit-learn ✅ Build real mini-projects: Sales report, COVID trends, Movie ratings
You don’t need 10 certifications—just 3 solid projects that prove your skills.
Keep it simple. Keep it real.
💬 Tap ❤️ for more!
❤16👍1🥰1
Some practical interview questions for an entry-level data analyst role in Power BI:
• Data Import Scenario: Describe how you would import data from various sources (Excel,SQL Server, CSV) into Power BI.
• Data Cleaning Exercise: In Power BI, how would you handle a dataset with missing values and inconsistent formats to prepare it for analysis?
• Handling Large Datasets: If you're working with a very large dataset in Power BI that is causing performance issues, what strategies would you use to optimize the data processing?
• Calculated Columns and Measures: Explain how you would use calculated columns and measures in Power BI to analyze year-over-year growth.
• Data Modeling Case: You have sales data in one table and customer data in another. How would you create a data model in Power BI to analyze customer purchase behavior?
• Visualizations Task: Describe your approach to visualizing sales data in Power BI to highlight trends over time across different product categories.
• Dashboard Optimization: A Power BI dashboard is loading slowly. What steps would you take to diagnose and improve its performance?
• Data Refresh Scheduling: How would you set up and manage automatic data refreshes for a weekly sales report in Power BI?
• Row-Level Security: How would you implement user-level security in Power BI for a report that needs different access levels for various users?
• Troubleshooting a DAX Calculation: If a DAX formula in Power BI is not returning the expected results, how would you go about troubleshooting it?
• Integration with Other Tools: Describe a scenario where you integrated Power BI with another tool or service (like Excel, Azure, or a web API).
• Interactive Reports Creation: How would you design a Power BI report that allows user interaction, such as using slicers or drill-down features?
• Adapting to Data Source Changes: If there are structural changes in a primary data source (like addition or removal of columns), how would you update your Power BI reports and dashboards?
• Sharing Reports: Explain how you would share a report with your team and set up access controls using Power BI Service.
• SQL Queries in Power BI: How do you use SQL queries in Power BI for advanced data transformation or analysis?
• Error Handling in Data Sources: How do you manage and resolve errors in data sources or calculations in Power BI?
• Custom Visuals Usage: Have you used custom visuals in Power BI? Describe the scenario and the benefit
• Collaboration in Power BI Projects: Discuss how you have worked with others on a Power BI project. What collaboration tools or features within Power BI did you utilize?
• Performance Tuning: What steps do you take to ensure your Power BI reports are performing optimally when dealing with large datasets or complex calculations?
Power BI Interviews 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope you'll like it
Like this post if you need more resources like this 👍❤️
• Data Import Scenario: Describe how you would import data from various sources (Excel,SQL Server, CSV) into Power BI.
• Data Cleaning Exercise: In Power BI, how would you handle a dataset with missing values and inconsistent formats to prepare it for analysis?
• Handling Large Datasets: If you're working with a very large dataset in Power BI that is causing performance issues, what strategies would you use to optimize the data processing?
• Calculated Columns and Measures: Explain how you would use calculated columns and measures in Power BI to analyze year-over-year growth.
• Data Modeling Case: You have sales data in one table and customer data in another. How would you create a data model in Power BI to analyze customer purchase behavior?
• Visualizations Task: Describe your approach to visualizing sales data in Power BI to highlight trends over time across different product categories.
• Dashboard Optimization: A Power BI dashboard is loading slowly. What steps would you take to diagnose and improve its performance?
• Data Refresh Scheduling: How would you set up and manage automatic data refreshes for a weekly sales report in Power BI?
• Row-Level Security: How would you implement user-level security in Power BI for a report that needs different access levels for various users?
• Troubleshooting a DAX Calculation: If a DAX formula in Power BI is not returning the expected results, how would you go about troubleshooting it?
• Integration with Other Tools: Describe a scenario where you integrated Power BI with another tool or service (like Excel, Azure, or a web API).
• Interactive Reports Creation: How would you design a Power BI report that allows user interaction, such as using slicers or drill-down features?
• Adapting to Data Source Changes: If there are structural changes in a primary data source (like addition or removal of columns), how would you update your Power BI reports and dashboards?
• Sharing Reports: Explain how you would share a report with your team and set up access controls using Power BI Service.
• SQL Queries in Power BI: How do you use SQL queries in Power BI for advanced data transformation or analysis?
• Error Handling in Data Sources: How do you manage and resolve errors in data sources or calculations in Power BI?
• Custom Visuals Usage: Have you used custom visuals in Power BI? Describe the scenario and the benefit
• Collaboration in Power BI Projects: Discuss how you have worked with others on a Power BI project. What collaboration tools or features within Power BI did you utilize?
• Performance Tuning: What steps do you take to ensure your Power BI reports are performing optimally when dealing with large datasets or complex calculations?
Power BI Interviews 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope you'll like it
Like this post if you need more resources like this 👍❤️
❤7
🗄️ SQL Developer Roadmap
📂 SQL Basics (SELECT, WHERE, ORDER BY)
∟📂 Joins (INNER, LEFT, RIGHT, FULL)
∟📂 Aggregate Functions (COUNT, SUM, AVG)
∟📂 Grouping Data (GROUP BY, HAVING)
∟📂 Subqueries & Nested Queries
∟📂 Data Modification (INSERT, UPDATE, DELETE)
∟📂 Database Design (Normalization, Keys)
∟📂 Indexing & Query Optimization
∟📂 Stored Procedures & Functions
∟📂 Transactions & Locks
∟📂 Views & Triggers
∟📂 Backup & Restore
∟📂 Working with NoSQL basics (optional)
∟📂 Real Projects & Practice
∟✅ Apply for SQL Dev Roles
❤️ React for More!
📂 SQL Basics (SELECT, WHERE, ORDER BY)
∟📂 Joins (INNER, LEFT, RIGHT, FULL)
∟📂 Aggregate Functions (COUNT, SUM, AVG)
∟📂 Grouping Data (GROUP BY, HAVING)
∟📂 Subqueries & Nested Queries
∟📂 Data Modification (INSERT, UPDATE, DELETE)
∟📂 Database Design (Normalization, Keys)
∟📂 Indexing & Query Optimization
∟📂 Stored Procedures & Functions
∟📂 Transactions & Locks
∟📂 Views & Triggers
∟📂 Backup & Restore
∟📂 Working with NoSQL basics (optional)
∟📂 Real Projects & Practice
∟✅ Apply for SQL Dev Roles
❤️ React for More!
❤22👏2
𝐒𝐐𝐋 𝐂𝐚𝐬𝐞 𝐒𝐭𝐮𝐝𝐢𝐞𝐬 𝐟𝐨𝐫 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰:
Join for more: https://news.1rj.ru/str/sqlanalyst
1. Danny’s Diner:
Restaurant analytics to understand the customer orders pattern.
Link: https://8weeksqlchallenge.com/case-study-1/
2. Pizza Runner
Pizza shop analytics to optimize the efficiency of the operation
Link: https://8weeksqlchallenge.com/case-study-2/
3. Foodie Fie
Subnoscription-based food content platform
Link: https://lnkd.in/gzB39qAT
4. Data Bank: That’s money
Analytics based on customer activities with the digital bank
Link: https://lnkd.in/gH8pKPyv
5. Data Mart: Fresh is Best
Analytics on Online supermarket
Link: https://lnkd.in/gC5bkcDf
6. Clique Bait: Attention capturing
Analytics on the seafood industry
Link: https://lnkd.in/ggP4JiYG
7. Balanced Tree: Clothing Company
Analytics on the sales performance of clothing store
Link: https://8weeksqlchallenge.com/case-study-7
8. Fresh segments: Extract maximum value
Analytics on online advertising
Link: https://8weeksqlchallenge.com/case-study-8
Join for more: https://news.1rj.ru/str/sqlanalyst
1. Danny’s Diner:
Restaurant analytics to understand the customer orders pattern.
Link: https://8weeksqlchallenge.com/case-study-1/
2. Pizza Runner
Pizza shop analytics to optimize the efficiency of the operation
Link: https://8weeksqlchallenge.com/case-study-2/
3. Foodie Fie
Subnoscription-based food content platform
Link: https://lnkd.in/gzB39qAT
4. Data Bank: That’s money
Analytics based on customer activities with the digital bank
Link: https://lnkd.in/gH8pKPyv
5. Data Mart: Fresh is Best
Analytics on Online supermarket
Link: https://lnkd.in/gC5bkcDf
6. Clique Bait: Attention capturing
Analytics on the seafood industry
Link: https://lnkd.in/ggP4JiYG
7. Balanced Tree: Clothing Company
Analytics on the sales performance of clothing store
Link: https://8weeksqlchallenge.com/case-study-7
8. Fresh segments: Extract maximum value
Analytics on online advertising
Link: https://8weeksqlchallenge.com/case-study-8
❤8
Data Analytics Interview Preparation
[Questions with Answers]
How did you get your job?
I was hired after an internship.
To get the internship, I prepared a bunch for general Python questions (LeetCode etc.) and studied the basics of machine learning (several different algorithms, how they work, when they're useful, metrics
to measure their performance, how to train them in practice etc.).
To get the internship I had to pass a technical interview as well as a take-home machine learning (ML) exercise. Then, it was just a question of doing a good job in the internship!
What are your data related responsibilities in your job?
I work on our recommendation system. It’s deep learning based. I work on a lot of features to try and
improve it (reinforcement learning & NLP etc). Since I'm in a start-up, it's also up to our team to put the models we design into production. So, after a phase of research & development and model design, in notebooks, it's time to create a real pipeline, by creating noscripts.
This enables us to define, train, replace, compare and check the status of the models in production. It's basically all in Python, using Keras/TensorFlow, Pandas, Scikit-learn and NumPy. We also do a lot of analysis for the business team to help them compute metrics of interest (related to
revenue, acquisition etc.). For that, we use an external utility called Metabase. It is is hooked up to our database where we write SQL queries and visualize the results and create dashboards (using
Tableau/Looker etc).
I would say my role is quite "full-stack" since we are all involved from the phase of R&D to deployment on our cluster.
Was it difficult to get this role?
I got hired after an internship. If you come from a scientific background, it's not that hard to transition into data science. All the math is something you will probably have seen already (especially if you're
doing maths or physics). So, with some preparation and coding practice, you can start applying to internships.
It took me maybe a month or two of preparation to get some basic ideas of the typical Python data stack (Pandas, Keras, SciKit-learn etc) before I started to send out CVs. Then, if you get an internship, try your best to do the best you can and then maybe you'll be hired after!
I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope it helps :)
[Questions with Answers]
How did you get your job?
I was hired after an internship.
To get the internship, I prepared a bunch for general Python questions (LeetCode etc.) and studied the basics of machine learning (several different algorithms, how they work, when they're useful, metrics
to measure their performance, how to train them in practice etc.).
To get the internship I had to pass a technical interview as well as a take-home machine learning (ML) exercise. Then, it was just a question of doing a good job in the internship!
What are your data related responsibilities in your job?
I work on our recommendation system. It’s deep learning based. I work on a lot of features to try and
improve it (reinforcement learning & NLP etc). Since I'm in a start-up, it's also up to our team to put the models we design into production. So, after a phase of research & development and model design, in notebooks, it's time to create a real pipeline, by creating noscripts.
This enables us to define, train, replace, compare and check the status of the models in production. It's basically all in Python, using Keras/TensorFlow, Pandas, Scikit-learn and NumPy. We also do a lot of analysis for the business team to help them compute metrics of interest (related to
revenue, acquisition etc.). For that, we use an external utility called Metabase. It is is hooked up to our database where we write SQL queries and visualize the results and create dashboards (using
Tableau/Looker etc).
I would say my role is quite "full-stack" since we are all involved from the phase of R&D to deployment on our cluster.
Was it difficult to get this role?
I got hired after an internship. If you come from a scientific background, it's not that hard to transition into data science. All the math is something you will probably have seen already (especially if you're
doing maths or physics). So, with some preparation and coding practice, you can start applying to internships.
It took me maybe a month or two of preparation to get some basic ideas of the typical Python data stack (Pandas, Keras, SciKit-learn etc) before I started to send out CVs. Then, if you get an internship, try your best to do the best you can and then maybe you'll be hired after!
I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope it helps :)
❤9
Essential SQL Topics for Data Analysts
- Basic Queries: SELECT, FROM, WHERE clauses.
- Sorting and Filtering: ORDER BY, GROUP BY, HAVING.
- Joins: INNER JOIN, LEFT JOIN, RIGHT JOIN.
- Aggregation Functions: COUNT, SUM, AVG, MIN, MAX.
- Subqueries: Embedding queries within queries.
- Data Modification: INSERT, UPDATE, DELETE.
- Indexes: Optimizing query performance.
- Normalization: Ensuring efficient database design.
- Views: Creating virtual tables for simplified queries.
- Understanding Database Relationships: One-to-One, One-to-Many, Many-to-Many.
Window functions are also important for data analysts. They allow for advanced data analysis and manipulation within specified subsets of data. Commonly used window functions include:
- ROW_NUMBER(): Assigns a unique number to each row based on a specified order.
- RANK() and DENSE_RANK(): Rank data based on a specified order, handling ties differently.
- LAG() and LEAD(): Access data from preceding or following rows within a partition.
- SUM(), AVG(), MIN(), MAX(): Aggregations over a defined window of rows.
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
- Basic Queries: SELECT, FROM, WHERE clauses.
- Sorting and Filtering: ORDER BY, GROUP BY, HAVING.
- Joins: INNER JOIN, LEFT JOIN, RIGHT JOIN.
- Aggregation Functions: COUNT, SUM, AVG, MIN, MAX.
- Subqueries: Embedding queries within queries.
- Data Modification: INSERT, UPDATE, DELETE.
- Indexes: Optimizing query performance.
- Normalization: Ensuring efficient database design.
- Views: Creating virtual tables for simplified queries.
- Understanding Database Relationships: One-to-One, One-to-Many, Many-to-Many.
Window functions are also important for data analysts. They allow for advanced data analysis and manipulation within specified subsets of data. Commonly used window functions include:
- ROW_NUMBER(): Assigns a unique number to each row based on a specified order.
- RANK() and DENSE_RANK(): Rank data based on a specified order, handling ties differently.
- LAG() and LEAD(): Access data from preceding or following rows within a partition.
- SUM(), AVG(), MIN(), MAX(): Aggregations over a defined window of rows.
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤13
🔥 Top SQL Projects for Data Analytics 🚀
If you're preparing for a Data Analyst role or looking to level up your SQL skills, working on real-world projects is the best way to learn!
Here are some must-do SQL projects to strengthen your portfolio. 👇
🟢 Beginner-Friendly SQL Projects (Great for Learning Basics)
✅ Employee Database Management – Build and query HR data 📊
✅ Library Book Tracking – Create a database for book loans and returns
✅ Student Grading System – Analyze student performance data
✅ Retail Point-of-Sale System – Work with sales and transactions 💰
✅ Hotel Booking System – Manage customer bookings and check-ins 🏨
🟡 Intermediate SQL Projects (For Stronger Querying & Analysis)
⚡ E-commerce Order Management – Analyze order trends & customer data 🛒
⚡ Sales Performance Analysis – Work with revenue, profit margins & KPIs 📈
⚡ Inventory Control System – Optimize stock tracking 📦
⚡ Real Estate Listings – Manage and analyze property data 🏡
⚡ Movie Rating System – Analyze user reviews & trends 🎬
🔵 Advanced SQL Projects (For Business-Level Analytics)
🔹 Social Media Analytics – Track user engagement & content trends
🔹 Insurance Claim Management – Fraud detection & risk assessment
🔹 Customer Feedback Analysis – Perform sentiment analysis on reviews ⭐
🔹 Freelance Job Platform – Match freelancers with project opportunities
🔹 Pharmacy Inventory System – Optimize stock levels & prenoscriptions
🔴 Expert-Level SQL Projects (For Data-Driven Decision Making)
🔥 Music Streaming Analysis – Study user behavior & song trends 🎶
🔥 Healthcare Prenoscription Tracking – Identify patterns in medicine usage
🔥 Employee Shift Scheduling – Optimize workforce efficiency ⏳
🔥 Warehouse Stock Control – Manage supply chain data efficiently
🔥 Online Auction System – Analyze bidding patterns & sales performance 🛍️
🔗 Pro Tip: If you're applying for Data Analyst roles, pick 3-4 projects, clean the data, and create interactive dashboards using Power BI/Tableau to showcase insights!
React with ♥️ if you want detailed explanation of each project
Share with credits: 👇 https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
If you're preparing for a Data Analyst role or looking to level up your SQL skills, working on real-world projects is the best way to learn!
Here are some must-do SQL projects to strengthen your portfolio. 👇
🟢 Beginner-Friendly SQL Projects (Great for Learning Basics)
✅ Employee Database Management – Build and query HR data 📊
✅ Library Book Tracking – Create a database for book loans and returns
✅ Student Grading System – Analyze student performance data
✅ Retail Point-of-Sale System – Work with sales and transactions 💰
✅ Hotel Booking System – Manage customer bookings and check-ins 🏨
🟡 Intermediate SQL Projects (For Stronger Querying & Analysis)
⚡ E-commerce Order Management – Analyze order trends & customer data 🛒
⚡ Sales Performance Analysis – Work with revenue, profit margins & KPIs 📈
⚡ Inventory Control System – Optimize stock tracking 📦
⚡ Real Estate Listings – Manage and analyze property data 🏡
⚡ Movie Rating System – Analyze user reviews & trends 🎬
🔵 Advanced SQL Projects (For Business-Level Analytics)
🔹 Social Media Analytics – Track user engagement & content trends
🔹 Insurance Claim Management – Fraud detection & risk assessment
🔹 Customer Feedback Analysis – Perform sentiment analysis on reviews ⭐
🔹 Freelance Job Platform – Match freelancers with project opportunities
🔹 Pharmacy Inventory System – Optimize stock levels & prenoscriptions
🔴 Expert-Level SQL Projects (For Data-Driven Decision Making)
🔥 Music Streaming Analysis – Study user behavior & song trends 🎶
🔥 Healthcare Prenoscription Tracking – Identify patterns in medicine usage
🔥 Employee Shift Scheduling – Optimize workforce efficiency ⏳
🔥 Warehouse Stock Control – Manage supply chain data efficiently
🔥 Online Auction System – Analyze bidding patterns & sales performance 🛍️
🔗 Pro Tip: If you're applying for Data Analyst roles, pick 3-4 projects, clean the data, and create interactive dashboards using Power BI/Tableau to showcase insights!
React with ♥️ if you want detailed explanation of each project
Share with credits: 👇 https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤19
Which library is best for creating static plots like line and bar charts?
Anonymous Quiz
7%
A) TensorFlow
81%
B) Matplotlib
4%
C) Pytest
9%
D) NumPy
❤7
Which library is built on top of Matplotlib for statistical visualization?
Anonymous Quiz
7%
A) Flask
10%
B) BeautifulSoup
79%
C) Seaborn
4%
D) Gensim
❤3