Data Analytics – Telegram
Data Analytics
108K subscribers
131 photos
2 files
801 links
Perfect channel to learn Data Analytics

Learn SQL, Python, Alteryx, Tableau, Power BI and many more

For Promotions: @coderfun @love_data
Download Telegram
📈Roadmap to Become a Data Analyst — 6 Months Plan

🗓️ Month 1: Foundations
- Excel (formulas, pivot tables, charts)
- Basic Statistics (mean, median, variance, correlation)
- Data types & distributions

🗓️ Month 2: SQL Mastery
- SELECT, WHERE, GROUP BY, JOINs
- Subqueries, CTEs, window functions
- Practice on real datasets (e.g. MySQL + Kaggle)

🗓️ Month 3: Python for Analysis
- Pandas, NumPy for data manipulation
- Matplotlib & Seaborn for visualization
- Jupyter Notebooks for presentation

🗓️ Month 4: Dashboarding Tools
- Power BI or Tableau
- Build interactive dashboards
- Learn storytelling with visuals

🗓️ Month 5: Real Projects & Case Studies
- Analyze sales, marketing, HR, or finance data
- Create full reports with insights & visuals
- Document projects for your portfolio

🗓️ Month 6: Interview Prep & Applications
- Mock interviews
- Revise common questions (SQL, case studies, scenario-based)
- Polish resume, LinkedIn, and GitHub

React ♥️ for more! 📱
Please open Telegram to view this post
VIEW IN TELEGRAM
25👍5🔥2
To effectively learn SQL for a Data Analyst role, follow these steps:

1. Start with a basic course: Begin by taking a basic course on YouTube to familiarize yourself with SQL syntax and terminologies. I recommend the "Learn Complete SQL" playlist from the "techTFQ" YouTube channel.

2. Practice syntax and commands: As you learn new terminologies from the course, practice their syntax on the "w3schools" website. This site provides clear examples of SQL syntax, commands, and functions.

3. Solve practice questions: After completing the initial steps, start solving easy-level SQL practice questions on platforms like "Hackerrank," "Leetcode," "Datalemur," and "Stratascratch." If you get stuck, use the discussion forums on these platforms or ask ChatGPT for help. You can paste the problem into ChatGPT and use a prompt like:
- "Explain the step-by-step solution to the above problem as I am new to SQL, also explain the solution as per the order of execution of SQL."

4. Gradually increase difficulty: Gradually move on to more difficult practice questions. If you encounter new SQL concepts, watch YouTube videos on those topics or ask ChatGPT for explanations.

5. Consistent practice: The most crucial aspect of learning SQL is consistent practice. Regular practice will help you build and solidify your skills.

By following these steps and maintaining regular practice, you'll be well on your way to mastering SQL for a Data Analyst role.
10🔥1
🚀 Essential Python/ Pandas snippets to explore data:
 
1.   .head() - Review top rows
2.   .tail() - Review bottom rows
3.   .info() - Summary of DataFrame
4.   .shape - Shape of DataFrame
5.   .describe() - Denoscriptive stats
6.   .isnull().sum() - Check missing values
7.   .dtypes - Data types of columns
8.   .unique() - Unique values in a column
9.   .nunique() - Count unique values
10.   .value_counts() - Value counts in a column
11.   .corr() - Correlation matrix
9
📊 Data Analytics – Key Concepts for Beginners 🔍

1️⃣ What is Data Analytics?
– The process of examining data sets to draw conclusions using tools, techniques, and statistical models.

2️⃣ Types of Data Analytics:
- Denoscriptive: What happened?
- Diagnostic: Why did it happen?
- Predictive: What could happen?
- Prenoscriptive: What should we do?

3️⃣ Common Tools:
- Excel
- SQL
- Python (Pandas, NumPy)
- R
- Tableau / Power BI
- Google Data Studio

4️⃣ Basic Skills Required:
- Data cleaning & preprocessing
- Data visualization
- Statistical analysis
- Querying databases
- Business understanding

5️⃣ Key Concepts:
- Data types (numerical, categorical)
- Mean, median, mode
- Correlation vs causation
- Outliers & missing values
- Data normalization

6️⃣ Important Libraries (Python):
- Pandas (data manipulation)
- Matplotlib / Seaborn (visualization)
- Scikit-learn (machine learning)
- Statsmodels (statistical modeling)

7️⃣ Typical Workflow:
Data Collection → Cleaning → Analysis → Visualization → Reporting

💡 Tip: Always ask the right business question before jumping into analysis.

💬 Tap ❤️ for more!
Please open Telegram to view this post
VIEW IN TELEGRAM
16👏4🥰1
Top Excel Formulas Every Data Analyst Should Know

SUM():

Purpose: Adds up a range of numbers.

Example: =SUM(A1:A10)


AVERAGE():

Purpose: Calculates the average of a range of numbers.

Example: =AVERAGE(B1:B10)


COUNT():

Purpose: Counts the number of cells containing numbers.

Example: =COUNT(C1:C10)


IF():

Purpose: Returns one value if a condition is true, and another if false.

Example: =IF(A1 > 10, "Yes", "No")


VLOOKUP():

Purpose: Searches for a value in the first column and returns a value in the same row from another column.

Example: =VLOOKUP(D1, A1:B10, 2, FALSE)


HLOOKUP():

Purpose: Searches for a value in the first row and returns a value in the same column from another row.

Example: =HLOOKUP("Sales", A1:F5, 3, FALSE)


INDEX():

Purpose: Returns the value of a cell based on row and column numbers.

Example: =INDEX(A1:C10, 2, 3)


MATCH():

Purpose: Searches for a value and returns its position in a range.

Example: =MATCH("Product B", A1:A10, 0)


CONCATENATE() or CONCAT():

Purpose: Joins multiple text strings into one.

Example: =CONCATENATE(A1, " ", B1)


TEXT():

Purpose: Formats numbers or dates as text.

Example: =TEXT(A1, "dd/mm/yyyy")

Excel Resources: t.me/excel_data

Like this post for more content like this 👍♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
12
📘 SQL Challenges for Data Analytics – With Explanation 🧠

(Beginner ➡️ Advanced)

1️⃣ Select Specific Columns

SELECT name, email FROM users;



This fetches only the name and email columns from the users table.

✔️ Used when you don’t want all columns from a table.


2️⃣ Filter Records with WHERE

SELECT * FROM users WHERE age > 30;



The WHERE clause filters rows where age is greater than 30.

✔️ Used for applying conditions on data.


3️⃣ ORDER BY Clause

SELECT * FROM users ORDER BY registered_at DESC;



Sorts all users based on registered_at in descending order.
✔️ Helpful to get latest data first.


4️⃣ Aggregate Functions (COUNT, AVG)

SELECT COUNT(*) AS total_users, AVG(age) AS avg_age FROM users;


Explanation:
- COUNT(*) counts total rows (users).
- AVG(age) calculates the average age.
✔️ Used for quick stats from tables.


5️⃣ GROUP BY Usage

SELECT city, COUNT(*) AS user_count FROM users GROUP BY city;

Groups data by city and counts users in each group.

✔️ Use when you want grouped summaries.


6️⃣ JOIN Tables

SELECT users.name, orders.amount  
FROM users
JOIN orders ON users.id = orders.user_id;



Fetches user names along with order amounts by joining users and orders on matching IDs.
✔️ Essential when combining data from multiple tables.


7️⃣ Use of HAVING

SELECT city, COUNT(*) AS total  
FROM users
GROUP BY city
HAVING COUNT(*) > 5;



Like WHERE, but used with aggregates. This filters cities with more than 5 users.
✔️ **Use HAVING after GROUP BY.**


8️⃣ Subqueries

SELECT * FROM users  
WHERE salary > (SELECT AVG(salary) FROM users);



Finds users whose salary is above the average. The subquery calculates the average salary first.

✔️ Nested queries for dynamic filtering9️⃣ CASE Statementnt**

SELECT name,  
CASE
WHEN age < 18 THEN 'Teen'
WHEN age <= 40 THEN 'Adult'
ELSE 'Senior'
END AS age_group
FROM users;



Adds a new column that classifies users into categories based on age.
✔️ Powerful for conditional logic.

🔟 Window Functions (Advanced)

SELECT name, city, score,  
RANK() OVER (PARTITION BY city ORDER BY score DESC) AS rank
FROM users;



Ranks users by each city.

React ♥️ for more
15
SQL Joins — A Practical Cheatsheet for Professionals

If you’re working with relational data — whether you’re a business analyst, backend dev, or aspiring data scientist — mastering SQL joins isn’t optional. It’s fundamental.

Here’s a concise guide to the most important join types, with real-world use cases:


INNER JOIN

Returns records with matching keys from both tables.
Use case: Show only customers who’ve placed at least one order.


LEFT JOIN (OUTER)

Returns all rows from the left table, and matched rows from the right.
Use case: List all customers, including those with zero orders.


RIGHT JOIN (OUTER)

Returns all rows from the right table. Rarely used, but powerful.
Use case: Show all orders, even if the customer was deleted.


FULL OUTER JOIN

Returns all records from both tables.
Use case: Capture everything — matched and unmatched.


CROSS JOIN

Returns the cartesian product.
Use case: Generate every possible product/supplier combo.


SELF JOIN

Joins a table to itself.
Use case: Show employees and their reporting managers.


Best Practices

Use aliases (A, B) for clean code
Prefer JOIN ON over WHERE for clarity
Always test joins with LIMIT to prevent overloads
4
If you want to be a data analyst, you should work to become as good at SQL as possible. 📱

1. SELECT

What a surprise! I need to choose what data I want to return.

2. FROM

Again, no shock here. I gotta choose what table I am pulling my data from.

3. WHERE

This is also pretty basic, but I almost always filter the data to whatever range I need and filter the data to whatever condition I’m looking for.

4. JOIN

This may surprise you that the next one isn’t one of the other core SQL clauses, but at least for my work, I utilize some kind of join in almost every query I write.

5. Calculations

This isn’t necessarily a function of SQL, but I write a lot of calculations in my queries. Common examples include finding the time between two dates and multiplying and dividing values to get what I need.

Add operators and a couple data cleaning functions and that’s 80%+ of the SQL I write on the job.

React ♥️ for more
Please open Telegram to view this post
VIEW IN TELEGRAM
16
Which python data type is immutable?
Anonymous Quiz
24%
A. List
11%
B. Dict
15%
C. Set
50%
D. Tuple
👏2
If I had to start learning data analyst all over again, I'd follow this:

1- Learn SQL:

---- Joins (Inner, Left, Full outer and Self)
---- Aggregate Functions (COUNT, SUM, AVG, MIN, MAX)
---- Group by and Having clause
---- CTE and Subquery
---- Windows Function (Rank, Dense Rank, Row number, Lead, Lag etc)

2- Learn Excel:

---- Mathematical (COUNT, SUM, AVG, MIN, MAX, etc)
---- Logical Functions (IF, AND, OR, NOT)
---- Lookup and Reference (VLookup, INDEX, MATCH etc)
---- Pivot Table, Filters, Slicers

3- Learn BI Tools:

---- Data Integration and ETL (Extract, Transform, Load)
---- Report Generation
---- Data Exploration and Ad-hoc Analysis
---- Dashboard Creation

4- Learn Python (Pandas) Optional:

---- Data Structures, Data Cleaning and Preparation
---- Data Manipulation
---- Merging and Joining Data (Merging and joining DataFrames -similar to SQL joins)
---- Data Visualization (Basic plotting using Matplotlib and Seaborn)

Hope this helps you 😊
21🔥2👏1
You're STILL a data analyst even if...

- you only use Excel
- you forgot the SQL syntax
- you bombed the big interview
- you don't know how to program
- you did an analysis completely wrong
- you can't remember the right function name
- you have to Google how to do something easy you've done before

You're NOT a data analyst when...
- you give up

SO DON'T GIVE UP! KEEP GOING!
154🔥6👏4
2
How do you access the value of a key in a dictionary?
Anonymous Quiz
37%
dict.key
6%
dict->key
44%
dict["key"]
13%
dict(key)
1👎1
10 Must-Have Habits for Data Analysts 📊🧠

1️⃣ Develop strong Excel & SQL skills
2️⃣ Master data cleaning — it’s 80% of the job
3️⃣ Always validate your data sources
4️⃣ Visualize data clearly (use Power BI/Tableau)
5️⃣ Ask the right business questions
6️⃣ Stay curious — dig deeper into patterns
7️⃣ Document your analysis & assumptions
8️⃣ Communicate insights, not just numbers
9️⃣ Learn basic Python or R for automation
🔟 Keep learning: analytics is always evolving

💬 Tap ❤️ for more!
27🔥2👏1
📚 Excel Roadmap: From Basics to Advanced ☑️

🟢 Beginner Level

1. Excel Overview
- What is Excel?
- Workbook, Worksheet, Cells
- Navigating the interface

2. Basic Data Entry
- Entering numbers, text, dates
- Autofill and Flash Fill
- Formatting cells (font, color, alignment)

3. Basic Formulas
- SUM, AVERAGE, MIN, MAX
- Simple arithmetic (+, -, *, /)
- Cell references (relative, absolute)

4. Basic Charts
- Bar, Column, Pie charts
- Inserting and customizing charts
- Using Chart Tools

🟡 Intermediate Level

5. Data Management
- Sorting and filtering data
- Conditional formatting
- Data validation (dropdowns)

6. Intermediate Formulas
- IF, COUNTIF, SUMIF
- Text functions: CONCATENATE, LEFT, RIGHT, MID
- Date functions: TODAY, NOW, DATE

7. Tables & Named Ranges
- Creating and managing Tables
- Using Named Ranges for easier formulas

8. Pivot Tables
- Creating PivotTables
- Grouping and summarizing data
- Using slicers and filters

🔵 Advanced Level

9. Advanced Formulas
- VLOOKUP, HLOOKUP, INDEX & MATCH
- Array formulas
- Nested IFs and logical formulas

10. Advanced Charts & Dashboards
- Combo charts
- Sparklines
- Interactive dashboards with slicers

11. Macros & VBA Basics
- Recording macros
- Basic VBA editing
- Automating repetitive tasks

12. Data Analysis Tools
- What-If Analysis (Goal Seek, Data Tables)
- Solver Add-in
- Power Query for data transformation

13. Collaboration & Security
- Sharing & protecting workbooks
- Track changes & comments
- Version history

14. Power Pivot & DAX
- Importing large datasets
- Creating relationships
- Writing basic DAX formulas

🔥 Pro Tip: Practice by building monthly budgets, sales reports, and dashboards.

React ❤️ for detailed explanation!
Please open Telegram to view this post
VIEW IN TELEGRAM
26
What does len("hello world") return in Python Programming?
Anonymous Quiz
22%
A) 10
61%
B) 11
7%
C) 12
10%
D) Error
3
What’s the output of print(type([1, 2, 3]))?
Anonymous Quiz
25%
A) <class 'list'>
28%
B) <type 'list'>
26%
C) list
21%
D) [1, 2, 3]
4
3️⃣ Which function takes user input?
Anonymous Quiz
11%
A) get()
6%
B) scan()
73%
C) input()
10%
D) print()
1
What does sum([2, 4, 6]) return?
Anonymous Quiz
4%
A) 10
90%
B) 12
4%
C) 14
3%
D) 16
1
Choose the correct use of range() to print numbers 1 to 5:
Anonymous Quiz
50%
A) range(1,6)
24%
B) range(1,5)
19%
C) range(0,5)
8%
D) range(1,4)
2
15 SQL interview questions for freshers

1) What is SQL and what is it used for?
Answer: SQL is a language for managing and querying relational databases. It’s used to retrieve, insert, update, delete data and to manage schema and permissions.

2) What are the different types of SQL statements?
Answer: DDL (Data Definition Language), DML (Data Manipulation Language), DCL (Data Control Language), and DTL (Transaction Control Language).

3) What is a primary key?
Answer: A unique identifier for each row in a table; cannot be NULL.

4) What is a foreign key?
Answer: A field that creates a link between two tables, enforcing referential integrity.

5) What is the difference between INNER JOIN and LEFT JOIN?
Answer: INNER JOIN returns matching rows from both tables; LEFT JOIN returns all rows from the left table and matched rows from the right table (NULL if no match).

6) What is normalization?
Answer: Organizing data to reduce redundancy by dividing into related tables and defining relationships.

7) What is a database index?
Answer: A data structure that improves the speed of data retrieval; can be on one or more columns.

8) What is GROUP BY and HAVING?
Answer: GROUP BY aggregates rows by column(s); HAVING filters groups after aggregation (unlike WHERE which filters rows before aggregation).

9) What is a subquery?
Answer: A query nested inside another query, used to perform operations that depend on another query’s result.

10) What is a view?
Answer: A saved query that presents data as a virtual table; does not store data itself.

11) What is transaction management?
Answer: Ensuring data integrity using ACID properties; COMMIT to save, ROLLBACK to undo, and SAVEPOINT to set a point to roll back to.

12) What are SQL constraints?
Answer: Rules like PRIMARY KEY, FOREIGN KEY, NOT NULL, UNIQUE, CHECK, and DEFAULT to enforce data integrity.

13) What is the difference between WHERE and HAVING?
Answer: WHERE filters rows before grouping; HAVING filters groups after aggregation.

14) What is a stored procedure?
Answer: A precompiled set of SQL statements stored in the database, can be executed with parameters.

15) What is the difference between UNION and UNION ALL?
Answer: UNION removes duplicates between results; UNION ALL keeps all rows, including duplicates.

💬 React with ❤️ for more! 😊
20👏1