Data Analytics – Telegram
Data Analytics
109K subscribers
135 photos
2 files
814 links
Perfect channel to learn Data Analytics

Learn SQL, Python, Alteryx, Tableau, Power BI and many more

For Promotions: @coderfun @love_data
Download Telegram
Complete Roadmap to Master Data Analytics in 3 Months:

Month 1: Foundations
Week 1: Data basics
- What data analytics is
- Business use cases
- Types of data: structured, semi-structured, unstructured
- Tools overview: Excel, SQL, Power BI or Tableau
Outcome: You know where analytics fits in a company.

Week 2: Excel for analysis
- Data cleaning: remove duplicates, handle blanks
- Core formulas: IF, VLOOKUP, XLOOKUP, COUNTIFS, SUMIFS
- Sorting, filtering, conditional formatting
Outcome: You clean and explore datasets fast.

Week 3: SQL fundamentals
- SELECT, WHERE, ORDER BY, LIMIT
- Aggregations: COUNT, SUM, AVG
- GROUP BY and HAVING
Outcome: You pull exact data you need.

Week 4: SQL joins and practice
- INNER, LEFT, RIGHT joins
- Handling NULLs and duplicates
- Daily query practice
Outcome: You combine tables with confidence.

Month 2: Analysis and Visualization
Week 5: Statistics for analysts
- Mean, median, mode
- Variance, standard deviation
- Correlation with real examples
Outcome: You explain numbers clearly.

Week 6: Power BI or Tableau basics
- Import data from Excel and SQL
- Data model basics: relationships
- Simple charts and tables
Outcome: You build clean visuals.

Week 7: Advanced visuals
- KPIs, filters, slicers
- Bar, line, pie, maps
- Dashboard layout rules
Outcome: Your dashboards tell a story.

Week 8: Business analysis skills
- Asking the right questions
- Metrics: revenue, growth, churn
- Turning insights into actions
Outcome: You think like a business analyst.

Month 3: Real World and Job Prep
Week 9: Python basics for analytics
- Python setup
- Pandas basics: read CSV, filter, group
- Simple analysis noscripts
Outcome: You automate analysis.

Week 10: End to end project
- Choose a dataset: sales or marketing
- Clean data, analyze trends, build a dashboard
Outcome: One solid portfolio project.

Week 11: Interview preparation
- SQL interview questions
- Case studies
- Explain your project clearly
Outcome: You answer with structure.

Week 12: Resume and practice
- Analytics focused resume
- GitHub or portfolio setup
- Daily practice on real questions
Outcome: You are job ready.

Practice platforms: Kaggle datasets, LeetCode SQL, HackerRank

Double Tap ♥️ For Detailed Explanation
56👍4
Glad to see the amazing response on data analytics roadmap. ❤️

Today, let's start with the first topic of data analytics roadmap:

What is Data Analytics

You collect raw data, clean it, analyze patterns, and share insights for decisions.
Data analytics means using data to answer business questions.

Real Examples
- Sales team checks which product sells most each month.
- HR tracks employee attrition rate.
- Marketing measures ad spend vs revenue.
- Finance monitors profit and cost trends.

Types of Analytics
- Denoscriptive: What happened. Example: Last month sales were ₹12 lakh.
- Diagnostic: Why it happened. Example: Sales dropped due to fewer ads.
- Predictive: What will happen next. Example: Forecast next quarter sales.
- Prenoscriptive: What action to take. Example: Increase ads in high performing regions.

Where Analytics is Used
- IT and software companies
- E-commerce and retail
- Banking and finance
- Healthcare
- EdTech and startups

Skills You Need as a Beginner
- Excel for cleaning and summaries
- SQL for data extraction
- Visualization tool like Power BI or Tableau
- Basic statistics
- Clear communication

Mini Task
Open Excel. Create a simple table with columns: Date, Product, Sales. Add 10 rows of fake data. Calculate total sales using SUM.

Next up: Types of data - Structured, semi-structured, unstructured.

Double Tap ♥️ For More
50
𝗙𝗥𝗘𝗘 𝗖𝗮𝗿𝗲𝗲𝗿 𝗖𝗮𝗿𝗻𝗶𝘃𝗮𝗹 𝗯𝘆 𝗛𝗖𝗟 𝗚𝗨𝗩𝗜😍

Prove your skills in an online hackathon, clear tech interviews, and get hired faster

Highlightes:- 

- 21+ Hiring Companies & 100+ Open Positions to Grab
- Get hired for roles in AI, Full Stack, & more

Experience the biggest online job fair with Career Carnival by HCL GUVI

𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:- 

https://pdlink.in/4bQP5Ee

Hurry Up🏃‍♂️.....Limited Slots Available
5
Now, let's move to the next topic of data analytics roadmap:

Types of Data ✍️

You work with three data types.

1. Structured Data
• Fixed rows and columns
• Easy to store and query
• Lives in databases and spreadsheets
• Examples: Sales table with date, product, revenue; Employee table with ID, department, salary
• Where you see it: Excel, SQL databases, CRM and ERP systems

2. Semi-structured Data
• No fixed table format
• Has tags or keys
• Needs parsing before analysis
• Examples: JSON from APIs, XML files, Log files
• Where you see it: Web applications, Mobile apps, Cloud systems

3. Unstructured Data
• No defined format
• Harder to analyze
• Needs advanced tools
• Examples: Text reviews, Emails, Images, audio, video
• Where you see it: Social media posts, Customer feedback, Call recordings

Why this matters to you
• Most analyst jobs start with structured data
• Semi-structured data appears in modern products
• Unstructured data leads to AI and NLP roles

Mini task for today
1. Open Excel. Create a structured table with 3 columns and 5 rows.
2. Download a sample JSON file from any API site. Identify keys and values.

Next topic: Tools used in data analytics.

Double Tap ♥️ For More
33
Now, let's move to the next topic of data analytics roadmap:

Tools Used in Data Analytics

You don't need every tool, you need the right stack.

Core tools to learn first:

1. Excel
- Fast cleaning and quick analysis
- Used in almost every company
- Focus on: Filters, sorting, IF, COUNTIFS, SUMIFS, pivot tables, basic charts
- Real use: Clean raw CSV files, build quick reports

2. SQL
- Data lives in databases, Excel breaks on large data
- Focus on: SELECT, WHERE, GROUP BY, HAVING, JOINS, subqueries
- Real use: Pull monthly sales data, join customer and orders tables

3. Visualization tool (Power BI or Tableau)
- Decision makers read charts, not tables
- Focus on: Connecting data sources, basic charts, filters, simple dashboards
- Real use: Sales dashboard, KPI tracking

4. Python (optional at start)
- Automation and deeper analysis
- Focus on: Pandas basics, reading CSV and Excel, simple grouping and filtering

Mini task:
- Install Excel alternative (Google Sheets works)
- Install MySQL or PostgreSQL
- Install Power BI Desktop or Tableau Public

👉 Next up: Excel basics for data analytics

Double Tap ♥️ For More
32👍2
𝗧𝗼𝗽 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝗧𝗼 𝗚𝗲𝘁 𝗛𝗶𝗴𝗵 𝗣𝗮𝘆𝗶𝗻𝗴 𝗝𝗼𝗯 𝗜𝗻 𝟮𝟬𝟮𝟲😍

Opportunities With 500+ Hiring Partners 

𝗙𝘂𝗹𝗹𝘀𝘁𝗮𝗰𝗸:- https://pdlink.in/4hO7rWY

𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀:- https://pdlink.in/4fdWxJB

📈 Start learning today, build job-ready skills, and get placed in leading tech companies.
5
Excel Basics for Data Analytics

Excel sits at the start of most analysis work.

What you use Excel for
• Cleaning raw data
• Exploring patterns
• Quick summaries for teams

Core concepts you must know
• Data setup
– Freeze header row. View → Freeze Top Row.
– Convert range to table. Ctrl + T.
– Use proper headers. No merged cells. One value per cell.

• Data cleaning
– Remove duplicates. Data → Remove Duplicates.
– Trim extra spaces. =TRIM(A2)
– Convert text to numbers. =VALUE(A2)
– Fix date format. Format Cells → Date.
– Handle blanks. Filter blanks, fill or delete.
– Find and replace. Ctrl + H.

• Essential formulas
– Math and counts
SUM. =SUM(A2:A100)
AVERAGE. =AVERAGE(A2:A100)
MIN. =MIN(A2:A100)
MAX. =MAX(A2:A100)
COUNT. Counts numbers.
COUNTA. Counts non blanks.
COUNTBLANK. Counts blanks.
– Conditional formulas
IF. =IF(A2>5000,"High","Low")
IFS. Multiple conditions.
AND. =AND(A2>5000,B2="West")
OR. =OR(A2>5000,A2<1000)
– Lookup formulas
XLOOKUP. =XLOOKUP(A2,Sheet2!A:A,Sheet2!B:B)
VLOOKUP. Old but common.
INDEX + MATCH. Powerful alternative.
– Text formulas
LEFT. =LEFT(A2,4)
RIGHT. =RIGHT(A2,2)
MID. =MID(A2,2,3)
LEN. =LEN(A2)
CONCAT or TEXTJOIN.
LOWER, UPPER, PROPER.
– Date formulas
TODAY. Current date.
NOW. Date and time.
YEAR, MONTH, DAY.
DATEDIF. Date difference.
EOMONTH. Month end.

• Sorting and filtering
– Sort by multiple columns.
– Filter by value, color, condition.
– Top 10 filter for quick insights.

• Conditional formatting
– Highlight duplicates.
– Color scales for trends.
– Rules for thresholds. Example. Sales > 10000 in green.

• Pivot tables
– Insert → PivotTable.
– Rows. Category or Product.
– Values. Sum, Count, Average.
– Filters. Date, Region.
– Refresh after data update.

• Charts you must know
– Column. Comparison.
– Bar. Ranking.
– Line. Trends over time.
– Pie. Share or percentage.
– Combo. Actual vs target.

• Data validation
– Dropdown list. Data → Data Validation → List.
– Prevent wrong entries.

• Useful shortcuts
– Ctrl + Arrow. Jump data.
– Ctrl + Shift + Arrow. Select range.
– Ctrl + 1. Format cells.
– Ctrl + L. Apply filter.
– Alt + =. Auto sum.
– Ctrl + Z / Y. Undo redo.

• Common analyst mistakes to avoid
– Merged cells.
– Hard coded totals.
– Mixed data types in one column.
– No backup before cleaning.

• Daily practice task
– Download any sales CSV.
– Clean it.
– Build one pivot table.
– Create one chart.

Excel Resources: https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i

Data Analytics Roadmap: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02/1354

Double Tap ♥️ For More
21👍3
𝗧𝗼𝗽 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝗢𝗳𝗳𝗲𝗿𝗲𝗱 𝗕𝘆 𝗜𝗜𝗧 𝗥𝗼𝗼𝗿𝗸𝗲𝗲 & 𝗜𝗜𝗠 𝗠𝘂𝗺𝗯𝗮𝗶😍

Placement Assistance With 5000+ Companies 

Deadline: 25th January 2026

𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 & 𝗔𝗜 :- https://pdlink.in/49UZfkX

𝗦𝗼𝗳𝘁𝘄𝗮𝗿𝗲 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴:- https://pdlink.in/4pYWCEK

𝗗𝗶𝗴𝗶𝘁𝗮𝗹 𝗠𝗮𝗿𝗸𝗲𝘁𝗶𝗻𝗴 & 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :- https://pdlink.in/4tcUPia

Hurry..Up Only Limited Seats Available
4🥰1
Now, let's move to the next topic of data analytics roadmap:

SQL Basics for Data Analytics

What SQL does
- Pull data from databases
- Filter large datasets
- Combine tables
- Summarize metrics

Core clauses
- SELECT: Choose columns
Example: SELECT name, sales FROM orders;
- FROM: Source table
Example: FROM orders;
- WHERE: Filter rows
Example: WHERE sales > 5000;
- ORDER BY: Sort results
Example: ORDER BY sales DESC;
- LIMIT: Restrict rows
Example: LIMIT 10;

Filtering operators
- =, <>, >, <, >=, <=
- BETWEEN for ranges
- IN for lists
- LIKE for patterns
Example: WHERE region IN ('East','West');

Logical conditions
- AND
- OR
- NOT

Aggregations
- GROUP BY: Group rows
Example: GROUP BY product;
- Aggregate functions: COUNT, SUM, AVG, MIN, MAX
- HAVING: Filter after aggregation
Example: HAVING SUM(sales) > 100000;

JOINS
- INNER JOIN: Matching rows only
- LEFT JOIN: All left rows, matching right
- RIGHT JOIN: All right rows, matching left
- FULL JOIN: All rows from both tables
Example:
SELECT o.order_id, c.customer_name 
FROM orders o
INNER JOIN customers c
ON o.customer_id = c.customer_id;

NULL handling
- IS NULL
- IS NOT NULL
- COALESCE(column, 0)

Subqueries
Query inside a query
Example:
SELECT * 
FROM orders
WHERE sales > (SELECT AVG(sales) FROM orders);

Window functions
- ROW_NUMBER: Unique row number
- RANK: Ranking with gaps
- PARTITION BY: Reset calculation per group
Example:
ROW_NUMBER() OVER (PARTITION BY department ORDER BY salary DESC)

Common mistakes
- Forgetting GROUP BY columns
- Using WHERE instead of HAVING
- Wrong join condition
- Ignoring NULLs

Daily practice
- Write 5 SELECT queries
- Use 1 JOIN
- Use 1 GROUP BY
- Handle NULL values

SQL Resources: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Double Tap ♥️ For More
12
Now, let's move to the next topic of data analytics roadmap:

Power BI Basics for Data Analytics

What Power BI Does
- Connects to data sources
- Transforms data
- Builds dashboards
- Shares insights

Core Components
- Power BI Desktop: main tool for reports, modeling, and visuals
- Power BI Service: cloud sharing and collaboration

Data Sources
- Excel
- CSV
- SQL Server
- MySQL, PostgreSQL
- Web APIs

Data Loading
- Home → Get Data
- Choose source
- Load or Transform

Power Query Basics
- Clean data before analysis
- Remove duplicates
- Change data types
- Split columns
- Rename columns
- Filter rows

Data Model
- Tables connect using relationships
- One to many is standard
- Avoid many to many early
- Use proper keys

DAX Basics
- Measures run at report level
- Calculated columns run row by row
- Common DAX measures:
- Total Sales = SUM(Sales[Amount])
- Total Orders = COUNT(Sales[OrderID])
- Average Sales = AVERAGE(Sales[Amount])

Time Intelligence Basics
- YTD sales
- MTD sales
- Previous month comparison

Visuals You Must Know
- Table
- Matrix
- Bar chart
- Line chart
- KPI card
- Pie chart

Filters and Slicers
- Page level filters
- Visual level filters
- Slicers for user interaction

Dashboard Design Rules
- One page focus
- Use consistent colors
- Show KPIs on top
- Avoid clutter

Daily Practice Task
- Load a sales Excel file
- Clean data in Power Query
- Create 3 measures
- Build one dashboard page

Power BI Resources: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

Double Tap ♥️ For More
13👏1
𝗜𝗻𝗱𝗶𝗮’𝘀 𝗕𝗶𝗴𝗴𝗲𝘀𝘁 𝗛𝗮𝗰𝗸𝗮𝘁𝗵𝗼𝗻 | 𝗔𝗜 𝗜𝗺𝗽𝗮𝗰𝘁 𝗕𝘂𝗶𝗹𝗱𝗮𝘁𝗵𝗼𝗻😍

Participate in the national AI hackathon under the India AI Impact Summit 2026

Submission deadline: 5th February 2026

Grand Finale: 16th February 2026, New Delhi

𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗡𝗼𝘄👇:- 

https://pdlink.in/4qQfAOM

a flagship initiative of the Government of India 🇮🇳
3
Now, let's move to the next topic of data analytics roadmap:

Statistics Basics for Data Analysts

Why Statistics Matters
- Explain trends
- Compare performance
- Avoid wrong conclusions

Denoscriptive Statistics
- Mean: Average value. Example: Average monthly sales ₹45,000.
- Median: Middle value. Handles outliers better than mean. Example: Typical salary in a team.
- Mode: Most frequent value. Example: Most sold product.

Spread of Data
- Range: Max minus min.
- Variance: Spread from the mean.
- Standard Deviation: How far values move from average. Low value means stable data.
Example: Avg sales ₹10,000. Std dev ₹500 means stable. Std dev ₹5,000 means volatile.

Percentages and Ratios
- Growth Rate: (Current - Previous) / Previous
- Conversion Rate: Leads to customers.

Correlation
- Relationship between two variables. Range: -1 to +1.
- Positive: Move together. Negative: Move opposite.
Example: Ad spend vs sales correlation 0.8.

Outliers
- Extreme values. Skew averages. Identify using sorting or box plots.

Sampling
- Small part of data. Saves time and cost.
- Full data often large. Samples give direction.

Common Mistakes
- Trusting averages only.
- Ignoring outliers.
- Confusing correlation with causation.

Mini Task
Take any sales data. Calculate mean, median, std dev. Check for outliers.

Statistics Resources: https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O

Double Tap ♥️ For More
13
🚀 𝟰 𝗙𝗥𝗘𝗘 𝗧𝗲𝗰𝗵 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗘𝗻𝗿𝗼𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟲 😍

📈 Upgrade your career with in-demand tech skills & FREE certifications!

1️⃣ AI & ML – https://pdlink.in/4bhetTu

2️⃣ Data Analytics – https://pdlink.in/497MMLw

3️⃣ Cloud Computing – https://pdlink.in/3LoutZd

4️⃣ Cyber Security – https://pdlink.in/3N9VOyW

More Courses – https://pdlink.in/4qgtrxU

🎓 100% FREE | Certificates Provided | Learn Anytime, Anywhere
🤩1
Business Metrics Every Data Analyst Must Know

Revenue Metrics
- Revenue: Total income from sales (e.g., monthly revenue ₹25 lakh)
- Gross Revenue vs Net Revenue: Gross (before costs), Net (after discounts and returns)
- Average Order Value: Revenue ÷ number of orders (e.g., ₹1,200 per order)

Growth Metrics
- Growth Rate: (Current − Previous) ÷ Previous (e.g., 15% month-over-month)
- Year-over-Year Growth: Compare same period last year

Customer Metrics
- Customer Count: Total active customers
- New vs Returning Customers: Shows retention strength
- Customer Acquisition Cost: Total marketing spend ÷ new customers
- Customer Lifetime Value: Total revenue from one customer over time

Retention and Churn
- Retention Rate: Customers who stayed ÷ total customers
- Churn Rate: Customers lost ÷ total customers (e.g., 1,000 customers, lost 50, churn rate 5%)

Marketing Metrics
- Conversion Rate: Conversions ÷ visitors
- Click-Through Rate: Clicks ÷ impressions
- Return on Ad Spend: Revenue ÷ ad spend

Product Metrics
- Daily Active Users: Users active per day
- Monthly Active Users: Users active per month
- DAU to MAU Ratio: Engagement strength

Operations Metrics
- Order Fulfillment Time: Time to deliver order
- Defect Rate: Defective units ÷ total units

Mini Task
Pick one business (E-commerce or EdTech). List 5 metrics it should track. Write one question each metric answers.

Let's take E-commerce:
1. Revenue: What's our total sales this month?
2. Customer Acquisition Cost: How much are we spending to acquire each new customer?
3. Retention Rate: How many customers are coming back to shop?
4. Average Order Value: What's the average amount customers are spending per order?
5. Order Fulfillment Time: How quickly are we delivering orders?

Double Tap ♥️ For More
18
7
What is the default sort order in ORDER BY
Anonymous Quiz
23%
A. DESC
12%
B. RANDOM
60%
C. ASC
4%
D. NONE
7
What does this query return

SELECT name FROM customers ORDER BY signup_date DESC LIMIT 1;
Anonymous Quiz
30%
A. Oldest customer
5%
B. Random customer
56%
C. Latest signed up customer
9%
D. All customers
8
What does this query do

SELECT order_id, amount FROM orders ORDER BY amount DESC LIMIT 5;
Anonymous Quiz
7%
A. Returns 5 random orders
19%
B. Returns 5 smallest orders
10%
C. Returns all orders sorted by amount
64%
D. Returns top 5 highest value orders
8
SQL vs NoSQL Databases: Quick Comparison

SQL Databases
- Structured data
- Fixed schema
- Table-based storage
- Strong consistency
- Popular tools: MySQL, PostgreSQL, SQL Server, Oracle
- Best use cases: Banking systems, ERP and CRM, transaction-heavy apps, reporting and analytics
- Job roles: Data Analyst, Backend Developer, Database Engineer, BI Developer
- Hiring reality: Mandatory in enterprises, core skill for analytics roles, used in almost every company
- India salary range: Fresher (4-7 LPA), Mid-level (8-18 LPA)
- Real tasks: Write complex queries, join multiple tables, build reports, ensure data integrity

NoSQL Databases
- Semi-structured or unstructured data
- Flexible schema
- Document, key-value, or graph based
- High scalability
- Popular tools: MongoDB, Cassandra, DynamoDB, Redis
- Best use cases: Real-time apps, big data systems, IoT platforms, rapidly changing products
- Job roles: Backend Developer, Data Engineer, Cloud Engineer, Platform Engineer
- Hiring reality: Strong demand in startups, common in cloud-native systems, often paired with SQL
- India salary range: Fresher (5-8 LPA), Mid-level (10-22 LPA)
- Real tasks: Store JSON documents, handle large traffic, design scalable schemas, optimize read and write speed

Quick Comparison
- Schema: SQL (fixed), NoSQL (flexible)
- Scaling: SQL (vertical), NoSQL (horizontal)
- Consistency: SQL (strong), NoSQL (eventual)
- Queries: SQL (powerful), NoSQL (simpler)

Role-based Choice
- Data Analyst: SQL required
- Backend Developer: Both useful
- Data Engineer: SQL + NoSQL
- Startup products: NoSQL preferred

Best Career Move
- Learn SQL first
- Add NoSQL for modern systems
- Use both in real projects

Which one do you prefer?
SQL ❤️
NoSQL 👍
Both 🙏
None 😮
20🔥1
𝗙𝘂𝗹𝗹 𝗦𝘁𝗮𝗰𝗸 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗣𝗿𝗼𝗴𝗿𝗮𝗺 😍

* JAVA- Full Stack Development With Gen AI
* MERN- Full Stack Development With Gen AI

Highlightes:-
* 2000+ Students Placed
* Attend FREE Hiring Drives at our Skill Centres
* Learn from India's Best Mentors

𝐑𝐞𝐠𝐢𝐬𝐭𝐞𝐫 𝐍𝐨𝐰👇 :- 

https://pdlink.in/4hO7rWY

Hurry, limited seats available!
2