Всё про Алгоритмы и Структуры данных – Telegram
Всё про Алгоритмы и Структуры данных
7.93K subscribers
329 photos
36 videos
5 files
2.8K links
Мы не претендуем на оригинальность контента, мы лишь собираем материал из открытых источников.

Ссылка: @Portal_v_IT

Сотрудничество, авторские права: @oleginc, @tatiana_inc

Канал на бирже: https://telega.in/c/structuredata
Download Telegram
Как измерить количество информации?

Мы ежедневно работаем с информацией из разных источников. При этом каждый из нас имеет некоторые интуитивные представления о том, что означает, что один источник является для нас более информативным, чем другой. Однако далеко не всегда понятно, как это правильно определить формально. Не всегда большое количество текста означает большое количество информации. Например, среди СМИ распространена практика, когда короткое сообщение из ленты информационного агентства переписывают в большую новость, но при этом не добавляют никакой «новой информации». Или другой пример: рассмотрим текстовый файл с романом Л.Н. Толстого «Война и мир» в кодировке UTF-8. Его размер — 3.2 Мб. Сколько информации содержится в этом файле? Изменится ли это количество, если файл перекодировать в другую кодировку? А если заархивировать? Сколько информации вы получите, если прочитаете этот файл? А если прочитаете его второй раз?

https://habr.com/ru/companies/JetBrains-education/articles/599637/

Алгоритмы и Структуры данных
15 игр, которые прокачивают логику, алгоритмы, ассемблер и силу земли

Есть «Super Mario», признанная классика видео игр. Есть «Doom», который запускают на чайниках и тестах на беременность. Есть супер-популярные по статистике twitch.tv игры («League of Legends», «GTA V», «Fortnite», «Apex Legends») которые стримят пятая часть всех стриммеров.

А есть игры, на которые очень мало обзоров, но они супер крутые — игры про алгоритмы. Игры, в которых можно кодить на ретро-компьютере; игры, которые надо взламывать; игры, где можно программировать контроллеры или поведение персонажей; игры, где можно создавать свою игру внутри игры.

Под катом подборка классных игр про алгоритмы за последние 10 лет. Если что-то упустила — буду рада дополнениям.

https://habr.com/ru/companies/timeweb/articles/599835/

Алгоритмы и Структуры данных
2
Интерпретация моделей и диагностика сдвига данных: LIME, SHAP и Shapley Flow

В этом обзоре мы рассмотрим, как методы LIME и SHAP позволяют объяснять предсказания моделей машинного обучения, выявлять проблемы сдвига и утечки данных, осуществлять мониторинг работы модели в production и искать группы примеров, предсказания на которых объясняются схожим образом.

Также поговорим о проблемах метода SHAP и его дальнейшем развитии в виде метода Shapley Flow, объединяющего интерпретацию модели и многообразия данных.

https://habr.com/ru/companies/ods/articles/599573/

Алгоритмы и Структуры данных
Как мы используем LLVM для ускорения формирования отчётов

Для бизнес-приложений очень важна возможность быстро сформировать нужный отчёт. Для этого, в частности, важно быстро получить результат запроса (часто – очень сложного запроса) к СУБД. Что не всегда просто, потому что с этой СУБД работают на чтение и запись тысячи (а иногда - десятки тысяч) пользователей.

Чтобы не нагружать рабочую СУБД запросами для отчетов мы разработали механизм копий баз данных, копирующий данные (все или их часть) из рабочей БД в отдельную БД для отчетности. Пользователи могут строить отчеты на «отчетной» БД, быстрее получая результат и не нагружая рабочую базу.

Для дальнейшего ускорения формирования отчетности мы разработали Дата акселератор — собственную SQL-совместимую in-memory базу данных, ориентированную на максимальную производительность в задачах OLAP. Дата акселератор может использоваться в качестве «отчетной БД» и позволяет существенно (иногда – на порядки) ускорить формирование отчетов.

https://habr.com/ru/companies/1c/articles/645365/

Алгоритмы и Структуры данных
1
k-means in Clickhouse

Алгоритм k-means хорошо известен и применяется когда надо быстро разделить массив данных на группы или т.н. "кластеры". Предполагается, что каждый элемент данных имеет набор численных метрик, и мы можем говорить как о позиции точки в некотором многомерном пространстве, так и о их взаимной близости.

k-means относится к категории EM-алогоритмов (Expectanion-Maximization), где мы попеременно определяем насколько правильно текущее разбиение точек на кластеры, а затем немного его улучшаем.

Этот достаточно простой алгоритм, был сформулирован ещё в 1950-х, и с тех пор реализован на самых разных языках программирования. Есть реализации для MySQL и Postgress, и даже для Excel.

https://habr.com/ru/articles/645291/

Алгоритмы и Структуры данных
Разделяй и Властвуй. Разбор задач

Решение задач с помощью метода "Разделяй и Властвуй" или по-английски "Divide and Conquer" является одним из базовых методов по ускорению алгоритмов. Примером тому служит переход от квадратичной сложности пузырьковой сортировки или сортировки вставками к сложности \inline O(n\log{n}) при сортировке слиянием. Или переход от линейной сложности к логарифмической, при реализации поиска элемента в отсортированном массиве (см. бинарный поиск).


В этой статье мы рассмотрим два примера задач с пояснениями и кодом, в которых будет использоваться этот подход.

https://habr.com/ru/companies/otus/articles/599309/

Алгоритмы и Структуры данных
ИИ-поиск в 2ГИС: как учим нейросети понимать настроение, фото и смыслы

Поиск — одна из ключевых функций в 2ГИС. Он помогает миллионам пользователей каждый день находить нужные места в городе. Долгое время мы опирались на классические методы: морфологию, справочник организаций, геопозицию и популярность объектов. Это позволяло покрывать множество сценариев, но со временем стало понятно — этого недостаточно.

Пользователи хотят искать так, как думают: по настроению, по смыслу или вообще без слов — по фотографии блюда или интерьера. Мы решили переосмыслить подход к поиску. В этой статье рассказываем, как мы решали три задачи:

https://habr.com/ru/companies/2gis/articles/951008/

Алгоритмы и Структуры данных
Музыка и математика: как аккорды вдохновляют архитектуру алгоритмов

Эта статья — эксперимент на стыке музыки, математики и программирования. Мы попробуем взглянуть на аккорды не как на набор звуков, а как на архитектурные паттерны. Я покажу, как гармонические последовательности могут подсказать нам структуру алгоритмов, приведу примеры кода и проведу параллели между миром нот и миром вычислений.

https://habr.com/ru/articles/951718/

Алгоритмы и Структуры данных
Как JPEG стал стандартом изображений в интернете

JPEG — формат-динозавр. Ему уже за тридцать, но он по-прежнему живее всех живых: даже в 2025 году изображения в JPEG встречаются повсюду.

В конце 80-х инженерам нужно было как-то справляться с растущими размерами файлов. Интернет был медленным, а фотографии — всё тяжелее. Тогда и придумали решение: сжатие с потерями, основанное на дискретном косинусном преобразовании (DCT). Если по-простому, DCT — это способ выкинуть из картинки то, чего наш глаз почти не заметит, и оставить главное. В итоге получаем файл в разы меньше, а картинка всё ещё выглядит прилично.

Почему именно этот подход победил конкурентов, кто его протолкнул и как JPEG стал «языком» интернета для изображений — обо всём этом дальше.

https://habr.com/ru/companies/first/articles/951960/

Алгоритмы и Структуры данных
👍1
Алгоритмы, базы и порядок: практическая подборка книг для разработчиков

Алгоритмы, базы данных и качество данных — три темы, без которых сегодня не обходится ни один проект. От того, как разработчик обращается с ними, зависит не только скорость работы приложений, но и то, насколько вообще можно доверять системе. Если алгоритм выбран неправильно — система будет тормозить; если база построена на «костылях» — она станет источником ошибок; если данные не проверять на качество — отчеты превратятся в хаос.

Чтобы помочь разобраться в этом, команда Read IT Club собрала подборку из трех книг, которые проверили рецензенты клуба — эксперты из ведущих технологических компаний. В них нет академической скуки, зато есть практические советы: как выбрать правильный алгоритм, не угробить архитектуру базы и научиться бороться с «грязными» данными. Каждая из них решает свою часть головоломки, но вместе они дают цельную картину того, как работать с данными и кодом надежно, эффективно и без лишних драм.

https://habr.com/ru/companies/croc/articles/952010/

Алгоритмы и Структуры данных
Хватит писать «чистый» код. Пора писать понятный код

Да, это очередная статья по чистому коду. Но по разным источникам, соотношение времени, затрачиваемого на чтение и написание кода, может достигать 7 к 1 и даже больше. Когда вы исправляете ошибку, добавляете новую функциональность или проводите рефакторинг, вы сначала погружаетесь в логику, написанную другими людьми (или вами же, но несколько месяцев назад). Именно поэтому читаемость кода становится более важным фактором, чем скорость его первоначального написания. Нечитаемый код - это технический долг, который замедляет всю команду и увеличивает стоимость разработки в долгосрочной перспективе.

https://habr.com/ru/articles/952300/

Алгоритмы и Структуры данных
Двадцать вопросов, которые помогают разработать алгоритм

Как разработать алгоритм, решающий сложную задачу? Многие считают, что для этого нужно «испытать озарение», что процесс этот не вполне рационален и зависит от творческой силы или таланта.

На самом деле решение любой задачи сводится к сбору информации о наблюдаемом объекте. Причем этот принцип применим как для решения самых сложных научно-исследовательских задач, так и для решения прикладных задач. Работа изобретателя напоминает не столько работу волшебника, сколько путешествие первооткрывателя по неизведанной территории. Главное качество хорошего изобретателя – умение собирать информацию.

Если вы хотите решить сложную задачу, собирайте информацию в самых разных направлениях. Ответив на следующие 20 вопросов, вы легко выстроите план работы над задачей.

https://habr.com/ru/articles/113597/

Алгоритмы и Структуры данных
Бэктестер для торговых стратегий на GPU со скоростью просчёта 150 тыс стратегий за 1 секунду

Меня зовут Андрей Счастливый. Пишу на Python. Месяц назад разбираясь с одним пакетом для бэктестинга торговых стратегий на C был очень разочарован в низкой скорости. А ведь в пакете для бэктестинга самое главное скорость и вообще возможность массово пакетами тестировать торговые стратегии. Решил написать на Python свой бэктестер с GPU.

За месяц написал пакет и вот ближе к делу, хочу рассказать о нём. Тянуть не буду сразу в лоб, цифры в факты.

WarpTrade - высокопроизводительный GPU-бэктестинг торговых стратегий, написанный на Python с использованием Taichi. Проект построен на модульной архитектуре с универсальным движком, способным запускать любые торговые стратегии через систему регистрации ядер. В основе лежит алгоритм собственной разработки.

https://habr.com/ru/articles/952434/

Алгоритмы и Структуры данных
Обучение скрытых слоёв S–A–R перцептрона без вычисления градиентов

Аннотация. Классический перцептрон Розенблатта с архитектурой S–A–R исторически не имел устойчивого алгоритма обучения многослойных структур. В результате в современном машинном обучении доминирует метод обратного распространения ошибки (backpropagation), основанный на градиентном спуске. Несмотря на успехи, этот подход имеет фундаментальные ограничения: необходимость вычисления производных нелинейных функций и высокая вычислительная сложность. В данной работе показано, что при интерпретации работы нейросети через алгоритм ID3 (Rule Extraction) скрытый слой автоматически формирует чистые окрестности в смысле кластерного анализа — признаки группируются по классам ещё до завершения обучения. На основе этого наблюдения автором предложен новый стохастический алгоритм обучения, восходящий к идеям Розенблатта, но принципиально расширяющий их: он позволяет обучать скрытые слои перцептрона без вычисления градиентов. Таким образом, впервые решается классическая проблема обучения архитектуры S–A–R без градиентных методов. Это открывает путь к созданию принципиально новых алгоритмов обучения нейросетей с более простой и интерпретируемой динамикой.

https://habr.com/ru/articles/952532/

Алгоритмы и Структуры данных
🤯1
ESP32: Базовые алгоритмы машинного обучения

ESP32 давно зарекомендовал себя как универсальный микроконтроллер для IoT: он умеет работать с Wi-Fi и Bluetooth, управлять сенсорами и исполнительными устройствами. Но за последние годы стало ясно, что даже на таких простых устройствах можно запускать алгоритмы машинного обучения.

В этой статье рассмотрим, как на ESP32 можно реализовать три базовых алгоритма классификации — дерево решений, метод К-ближайших соседей (KNN) и полносвязную нейросеть на TensorFlow Lite.

https://habr.com/ru/articles/952518/

Алгоритмы и Структуры данных
Нормированные пространства и рендеринг трёхмерных фрактальных множеств: ray marching, поле расстояний, базовые примеры

Как и любому ИТ‑специалисту, мне приходится сталкиваться с новыми нестандартными задачами, для решения которых нужно погрузиться в новую для себя область, взглянуть на работу под другим углом, активизировать весь свой бэкграунд, в особенности математический.

Для меня самыми интересными из таких задач всегда являются те, которые связаны с визуализацией данных. Вот один из примеров. Я работал в команде Platform V Monitor — это кроссплатформенный ИТ‑мониторинг и сервисы телеметрии, для которого нужно было визуализировать представление данных в виде ориентированного графа с большим количество (1000+) вершин и еще большим количеством рёбер.

Каждая вершина должна была иметь подпись‑название и являлась управляющим элементом интерфейса. Одним из возможных вариантов решения, было использование методов компьютерной графики, «выход в 3D». И хотя в итоге удалось решить задачу, оставаясь в 2D, трёхмерный вариант решения имел свои достоинства.

https://habr.com/ru/companies/sberbank/articles/952102/

Алгоритмы и Структуры данных
Зубрить сложно, понимать легко: бинарный поиск

Как правило, обучающие материалы сводятся к показу одного «правильного» решения. Такие решения можно попробовать запомнить, но они быстро забываются и не помогают по-настоящему понять алгоритм.

Меня интригует вопрос: возможно ли объяснение, которое позволит не просто заучивать формулы, а понять саму логику? И если такое объяснение существует, даст ли оно возможность решать похожие задачи — или даже помогает становиться лучшим программистом?

Сразу оговорюсь: мы не будем останавливаться на тривиальных проверках,
вроде пустого массива или некорректных параметров. Фокус статьи — на сути алгоритма.

https://habr.com/ru/articles/952810/

Алгоритмы и Структуры данных
Задачи по алгоритмам: ищем непростые числа

Я не математик, но люблю решать задачи. Я люблю трудные задачи, которые не знаешь, как решать, а если и знаешь, трудно написать код верно.

Наконец, все работает. Остаются черновики, которые выбросить жалко. Выброшу лишнее с черновика и оставлю конспект, который и через годы напомнит решение.

Говорят "У человека феноменальная память - он помнит все". Он записывает. Не помните, что делали три дня назад? Ведите дневник, а не покупайте "таблетки для памяти".

https://habr.com/ru/articles/952986/

Алгоритмы и Структуры данных
ESP32 + LD2410: Архитектуры нейронных сетей для классификации движений

Микроконтроллеры давно перестали быть простыми устройствами для управления датчиками и исполнительными механизмами. Сегодня, благодаря библиотекам вроде TensorFlow Lite, даже компактный ESP32 способен выполнять инференс нейросетей в реальном времени. В этой статье я расскажу о серии экспериментов по классификации движений человека с помощью сверхширокополосного радарного датчика LD2410 и различных базовых архитектур машинного обучения, таких как полносвязная, свёрточная, рекуррентная нейронные сети и трансформер (механизм внимания).

Каждый из подходов я реализовал и проверил на практике. В итоге получилась серия видеоуроков и репозиториев с кодом, но здесь я соберу все в одну статью, чтобы показать эволюцию решений и сравнить их эффективность.

https://habr.com/ru/articles/952548/

Алгоритмы и Структуры данных
Визуализация алгоритмов стандартной библиотеки C++ (продолжение)

В стандартной библиотеке C++ много разных алгоритмов для работы с контейнерами. С помощью этих алгоритмов можно искать значения, сортировать последовательности, изменять их и делать многое другое. Среди такого большого количества алгоритмов есть довольно сложные, которые сходу не поймешь. Но если визуализировать их работу, то все становится ясно.

https://habr.com/ru/articles/763024/

Алгоритмы и Структуры данных
2
Как не сломать продакшен: 8 основных паттернов распределенных систем

Распределeнные системы стали основой современных высоконагруженных и отказоустойчивых приложений. Однако их разработка сопряжена сo множеством вызовов – от управления состоянием и взаимодействия сервисов до обработки отказов и масштабирования. Чтобы упростить решение этих задач, инженеры используют проверенные временем архитектурные паттерны. В этой статье мы разберeм восемь ключевых шаблонов, помогающих строить надeжные и эффективные распределенные системы.

https://proglib.io/p/kak-ne-slomat-prodakshen-8-osnovnyh-patternov-raspredelennyh-sistem-2025-02-10

Алгоритмы и Структуры данных