Всё про Алгоритмы и Структуры данных – Telegram
Всё про Алгоритмы и Структуры данных
7.93K subscribers
329 photos
36 videos
5 files
2.8K links
Мы не претендуем на оригинальность контента, мы лишь собираем материал из открытых источников.

Ссылка: @Portal_v_IT

Сотрудничество, авторские права: @oleginc, @tatiana_inc

Канал на бирже: https://telega.in/c/structuredata
Download Telegram
Алгоритм Левита: между Дейкстре и Беллманом

Когда заходит речь о поиске кратчайшего пути между двумя вершинами выбор обычно падает на алгоритмы Дейкстры или Беллмана-Форда, однако есть ещё один алгоритм, который может сработать быстрее Беллмана, но не "сломается" на графах с отрицательными рёбрами.

https://habr.com/ru/articles/759078/

Алгоритмы и Структуры данных
1
Чтобы двигаться быстро, решатели квантовых лабиринтов должны забыть о прошлом

Представьте, что вы посещаете лабиринт с друзьями. Вы вышли из выхода вскоре после входа и ждёте несколько часов, прежде чем появятся ваши друзья. Естественно, они спрашивают о пути, по которому вы шли — вы ведь можете проследить свои шаги и показать им путь, верно?

Неверно в мире, где правят странные законы квантовой физики. Двадцать лет назад исследователи квантовых вычислений разработали алгоритм, который использовал эти законы для прохождения определенного вида математического лабиринта намного быстрее, чем любой алгоритм, работающий на обычном классическом компьютере. Но за это ускорение приходится платить: быстрый квантовый алгоритм находит выход, но понятия не имеет, как он туда попал.

Исследователи давно задавались вопросом, неизбежен ли этот компромисс. Неужели невозможно быстро найти выход, не забыв дорогу?

https://habr.com/ru/companies/first/articles/757846/

Алгоритмы и Структуры данных
👍1
GigaMemory: научи ИИ «помнить всё» с AI Journey Contest 2025

Мы всё чаще делегируем ИИ-ассистентам рабочую рутину и бытовые вопросы. Но во взаимодействии с ними есть существенная проблема: модели не помнят пользователя. Между сессиями теряются имя, контекст работы, желаемые ограничения и предпочтения, значительно влияющие на то, что и как стоит ответить пользователю. В итоге диалог каждый раз начинается «с нуля», а ответы звучат усреднённо. Это снижает эффективность и подрывает доверие: когда ассистент не помнит важное о вас, он превращается в поисковик с красивыми фразами.

https://habr.com/ru/companies/sberbank/articles/957292/

Алгоритмы и Структуры данных
🤯1
Как мы переучивали алгоритм построения маршрутов 2ГИС ради грузовиков

Куда и по каким дорогам могут заезжать грузовые автомобили, регламентируется отдельными правилами дорожного движения. Разрабатывая режим построения грузовых маршрутов, мы решали главную задачу — научить алгоритм работать с этими правилами, чтобы пользователи получали наиболее точные результаты.

Я расскажу, как в 2ГИС устроен алгоритм построения маршрутов в целом и как мы адаптировали его под грузовики — например, учили его строить неоптимальные по времени маршруты.

https://habr.com/ru/companies/2gis/articles/757538/

Алгоритмы и Структуры данных
[Алгоритмы, Задачки] Элегантно и идиоматично обходим двоичное дерево поиска на Python 3

Недавно увидел на просторах телеграмма заметку о том как решать алгоритмические задачи на деревья. Вспомнил, что в свое время у меня тоже были некоторые наработки, при этом они отличаются от того что описывается по умолчанию в статьях и курсах. Решил "показать их миру" и похоливарить, поэтому очень рассчитываю на ваш фидбэк, вдруг вам эта информация пригодится во время подготовки к собеседованиям. А может быть узнаете что-то новое для себя.

https://habr.com/ru/articles/957050/

Алгоритмы и Структуры данных
👍1
Этические аспекты использования искусственного интеллекта в промышленности

Аннотация. Статья посвящена анализу этически вызовов, возникающих при интеграции систем искусственного интеллекта (ИИ) в промышленность. На основе ключевых международных и национальных документов — Рекомендации по этике ИИ ЮНЕСКО, Спецификации этики искусственного интеллекта нового поколения Китая, Закона Европейского Союза об искусственном интеллекте и российского Кодекса этики в сфере ИИ — рассматриваются основные риски и принципы, которые должны лежать в основе проектирования, внедрения и эксплуатации промышленных ИИ-систем на всех этапах их жизненного цикла. Особое внимание уделяется вопросам безопасности, прозрачности, объяснимости и подконтрольности человеку промышленных ИИ-систем в контексте Индустрии 4.0.

https://habr.com/ru/articles/957802/

Алгоритмы и Структуры данных
🤯1
Этические аспекты использования искусственного интеллекта в промышленности

Аннотация. Статья посвящена анализу этических вызовов, возникающих при интеграции систем искусственного интеллекта (ИИ) в промышленность. На основе ключевых международных и национальных документов — Рекомендации по этике ИИ ЮНЕСКО, Спецификации этики искусственного интеллекта нового поколения Китая, Закона Европейского Союза об искусственном интеллекте и российского Кодекса этики в сфере ИИ — рассматриваются основные риски и принципы, которые должны лежать в основе проектирования, внедрения и эксплуатации промышленных ИИ-систем на всех этапах их жизненного цикла. Особое внимание уделяется вопросам безопасности, прозрачности, объяснимости и подконтрольности человеку промышленных ИИ-систем в контексте Индустрии 4.0.

https://habr.com/ru/articles/957802/

Алгоритмы и Структуры данных
🤯1
Придумал расширение для Chrome и устранил шахматных читеров

Поисковая выдача по запросу «chrome extension for cheating in chess» переполнена. Инструментов для нечестной игры — десятки.

Но стоит инвертировать пожелание и поискать плагин для защиты — не найдется почти ничего. Кроме расширения, о котором сегодня пойдет речь. Ну, возможно, еще нескольких старых приложений, показывающих базовую статистику.

https://habr.com/ru/companies/selectel/articles/957758/

Алгоритмы и Структуры данных
1🔥1
Почему файлы стали меньше: форматы фото и видео (JPEG, HEIC, AV1)

Форматы изображений и видео вроде JPEG, HEIC и AV1 давно стали частью нашей повседневности. Мы снимаем на смартфон, пересылаем фото в мессенджерах, заливаем видео в облако — и редко задумываемся, почему одинаковый кадр может весить в три раза меньше, но выглядеть так же.

Если вы хотите разобраться, как современные кодеки экономят место, почему файлы стали компактнее и зачем это вообще понадобилось, то эта статья для вас.

https://habr.com/ru/companies/ruvds/articles/956918/

Алгоритмы и Структуры данных
1🤯1
Задачи по алгоритмам: избавляемся от анаграмм

https://leetcode.com/problems/find-resultant-array-after-removing-anagrams/

Дан массив слов words. Слово содержит латинские буквы в нижнем регистре a-z. Проверить пары смежных слов (w_i, w_{i+1}) и удалить w_{i+1}, когда w_i и w_{i+1} - анаграммы.

https://habr.com/ru/articles/958004/

Алгоритмы и Структуры данных
1🤯1
RL (RLM): Разбираемся вместе

Всем привет! Недавно я познакомился с курсом по глубокому обучению с подкреплением от HuggingFace Deep Reinforcement Learning Course и захотел сделать выжимку самого интересного. Эта статья — своего рода шпаргалка по основам Reinforcement Learning (RL) и одному из ключевых алгоритмов — PPO, который лежит в основе тонкой настройки современных LLM (Large Language Models).

Вы наверняка слышали про такие модели, как o1 от OpenAI или QwQ от Alibaba. Их "рассуждающие" способности во многом — результат применения RL. Давайте разберемся, как обычный принцип обучения, известный по играм вроде AlphaGo, помогает языковым моделям стать умнее.

https://habr.com/ru/articles/958062/

Алгоритмы и Структуры данных
1🔥1
EvoPress: новый подход к оптимизации и сжатию LLM от исследователей Яндекса

Всем привет! Меня зовут Денис Кузнеделев, я работаю в команде Yandex Research. Моё основное направление деятельности на данный момент — задача сжатия и ускорения больших языковых и картиночных моделей. Затраты на обучение, инференс и деплой LLM стали одной из ключевых инфраструктурных проблем индустрии: дефицит вычислительных ресурсов, нехватка видеопамяти и высокие требования языковых моделей к вычислительным ресурсам препятствуют масштабированию решений.

Сегодня я расскажу о методе неравномерного сжатия нейронных сетей EvoPress, который мы предложили совместно с коллегами из ETH Zurich и представили в июле этого года на одной из ведущих конференций по машинному обучению — ICML.

https://habr.com/ru/companies/yandex/articles/957228/

Алгоритмы и Структуры данных
1🤯1
Инструкция по бесплатной GPT генерации новых фичей для наращивания точности ML модели

Одним из самых важных навыков любого специалиста по данным или ML инженера является умение извлекать информативные признаки из исходного набора данных. Этот процесс называемый feature engineering (инженерия признаков), — одна из самых полезных техник при построении моделей машинного обучения.

Работа с данными требует значительных инженерных усилий. Хотя современные библиотеки вроде scikit-learn помогают нам с большей частью рутинных операций, по-прежнему критически важно понимать структуру данных и адаптировать её под задачу, которую вы решаете.

Создание новых, более качественных признаков позволяет модели лучше улавливать зависимости, отражающие особенности предметной области и влияющие на результаты факторы.

Разумеется, feature engineering — это времязатратный, креативный и нередко утомительный процесс, требующий экспериментов и опыта.

https://habr.com/ru/articles/956310/

Алгоритмы и Структуры данных
👍1
Обучение скрытых слоёв S–A–R перцептрона без вычисления градиентов. Часть 2

Предисловие. Опубликовав первую часть понял, что само обучение перцептрона мало кого интересует, пока не будет экспериментальных результатов. И это разрешило мою дилемму о том, как сократить изложение для хабра. Мы пропустим разделы с объяснением архитектуры перцептрона TL&NL и начнем сразу с 4 раздела моей статьи.

https://habr.com/ru/articles/958498/

Алгоритмы и Структуры данных
👍1
Решение проблемы двойного букинга: паттерны проектирования систем

Давно прошло то время, когда люди стояли в длинных очередях для покупки билетов на концерты, авиарейсы, фильмы, матчи и другие события.

Технологические компании наподобие Ticketmaster, BookMyShow, Airbnb, Delta Airlines и так далее сделали бронирование делом одного клика, позволившим покупать билеты из дома.

Эта простота стала возможной благодаря технологическим платформам и сервисам, которые прячут от пользователей всю сложность и решают неординарные инженерные задачи. Одна из таких задач — предотвращение бронирования одного места несколькими пользователями.

https://habr.com/ru/articles/957954/

Алгоритмы и Структуры данных
🤯1
Балконы и полигоны: как мы разметили 12 000 квартир для генерации 3D-туров

Те, кто имел дело с покупкой и продажей недвижимости, знает, что просмотры — очень хлопотное занятие. Неудивительно, что для экономии времени появляются предложения посмотреть квартиру онлайн или с помощью 3D‑тура. О таких виртуальных экскурсиях мы сегодня и поговорим.

В сентябре Яндекс Недвижимость рассказала о 3D‑турах для новостроек. С момента начала тестирования в июле на сервисе было сгенерировано более четверти миллиона виртуальных экскурсий по строящимся квартирам. Чтобы это стало возможным, мы обучили нейросеть анализировать планировки и превращать их в трёхмерные визуализации. Но прежде всего нужно было проделать большую и кропотливую работу, чтобы нейросеть понимала, где отрисовывать окно или класть плитку на пол.

https://habr.com/ru/companies/yandex/articles/954650/

Алгоритмы и Структуры данных
🤯1
T-LoRA: дообучить диффузионную модель на одной картинке и не переобучиться

Вы когда‑нибудь мечтали стать лучшей версией себя? Моложе, красивее, идеальнее… А вот LoRA уже стала!

Меня зовут Вера Соболева, я научный сотрудник лаборатории FusionBrain Института AIRI, а также стажер‑исследователь Центра глубинного обучения и байесовских методов НИУ ВШЭ. Cегодня я расскажу про наше свежее исследование T‑LoRA: Single Image Diffusion Model Customization Without Overfitting. Мы с коллегами придумали эффективный способ как файнтюнить диффузионные модели с помощью LoRA всего по одной картинке.

https://habr.com/ru/companies/airi/articles/958348/

Алгоритмы и Структуры данных
Как RuStore читает мысли пользователей (и причём тут теги)

Когда пользователь открывает RuStore и вводит запрос вроде «тренировки дома» или «обои с кошками», он ищет не конкретное приложение, а способ решить задачу. Наша цель, как стора, — понять, какое приложение действительно поможет ему это сделать.

За этим стоит сложный ML-пайплайн: сначала модель отбирает кандидатов по смысловой близости запроса, затем ранжирует их по релевантности. А поисковые теги помогают системе уловить контекст — в каких ситуациях и по каким запросам ваше приложение должно оказаться в топе выдачи.

Меня зовут Анастасия Войцешко, я продакт-менеджер в RuStore. В этой статье расскажу, как устроен поиск внутри стора, какую роль теги играют и как подобрать их так, чтобы повысить шансы приложения попасть в релевантную выдачу.

https://habr.com/ru/companies/vk/articles/956450/

Алгоритмы и Структуры данных
👍1
Создание интерактивного макета. Упаковка кругов в квадрат и прямоугольник. Жадный алгоритм

Я занялась разработкой сайта, который предоставляет пользователям возможность визуализировать различные цветочные дизайны. По замыслу, любой страждущий, заходя на сайт, может выбрать желаемую форму и размер букета, после чего соответствующий макет заполнить цветами из каталога.

https://habr.com/ru/articles/958888/

Алгоритмы и Структуры данных
1
Передовые алгоритмы глубокого обучения

В этой главе мы поговорим о передовых алгоритмах глубокого обучения. Они были подобраны с учетом соответствия их архитектуры современным стандартам качества и широты спектра применения. В этой главе мы изучим генеративные модели, основанные на вариационных автоэнкодерах (variational autoencoders, VAE), и рассмотрим полноценную реализацию детектора аномалий для данных временнˆых рядов. Мы продолжим наше путешествие знакомством с интригующей комбинацией нейронных сетей и классических моделей гауссовой смеси с использованием амортизированного вариационного вывода и взглянем на реализацию сети смешанной плотности. Затем мы сосредоточимся на концепции внимания и изучим реализацию с чистого листа архитектуры трансформера для задачи классификации. Наконец, мы рассмотрим графовые нейронные сети и используем одну из них для классификации вершин в графе цитирования. На протяжении всей этой главы мы будем пользоваться библиотекой глубокого обучения Keras/TensorFlow.

https://habr.com/ru/companies/piter/articles/958662/

Алгоритмы и Структуры данных
1👍1🤯1
Чем вообще занимается человечество?

Вот уже последние лет 10 одна половина человечества стремительно проваливается в пучину бесполезного повторения одного и того же с каждый раз всё худшими показателями, а вторая половина запрещает абы что.

в github, vscode и windows абсолютно каждое обновление уже несколько лет связано только с "ИИ", при этом ни один реальный показатель этих программ не стал лучше. В каждый поисковой запрос встроен ИИ, а качество поиска в гугле стало хуже (считал ли кто-то, сколько электричества ушло на это?)

Компилятор go переписывают на go, JavaScript существует больше 20 лет, появился TypeScript, но он... Всё также компилируется в обычный JavaScript, даже более объёмный, чем написанный вручную. До сих пор все оптимизации передачи джаваскрипта по сети не пошли дальше удаления пробелов из исходного текста, хотя на поверхности лежит трансляция TypeScript в бинарный JS, который позже напрямую быстрее интерпретируется и тратит в разы меньше сетевого трафика

https://habr.com/ru/articles/959142/

Алгоритмы и Структуры данных
4