#Собес #TensorFlow
🤔 Что такое тензоры в TensorFlow и как они используются в моделях глубокого обучения?
Тензоры в TensorFlow - это многомерные массивы данных, которые используются для представления входных данных, выходных данных и промежуточных значений между слоями. Тензоры бывают разных размерностей (OD, 1D, 2D и т.д.) и позволяют эффективно выполнять вычисления и градиентные расчеты при обучении моделей.
👉 Новости 👉 База вопросов
Тензоры в TensorFlow - это многомерные массивы данных, которые используются для представления входных данных, выходных данных и промежуточных значений между слоями. Тензоры бывают разных размерностей (OD, 1D, 2D и т.д.) и позволяют эффективно выполнять вычисления и градиентные расчеты при обучении моделей.
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
👨💻 PyTorch выпустил mm: 3D визуализатор матричных умножений
Matrix Multiplication (matmul) — основа современных нейросетей. И теперь вы можете наглядно увидеть, как это работает.
Инструмент от PyTorch называется mm — это визуализатор, который показывает, как матрицы взаимодействуют во время перемножения. Отличный способ понять внутреннюю механику операций, лежащих в основе ИИ.
Особенности
🟠 Работает прямо в браузере
🟠 Показывает процесс перемножения пошагово
🟠 Подходит для обучения, презентаций и просто ради любопытства
Ссылка на проект
👉 Новости 👉 База вопросов
Matrix Multiplication (matmul) — основа современных нейросетей. И теперь вы можете наглядно увидеть, как это работает.
Инструмент от PyTorch называется mm — это визуализатор, который показывает, как матрицы взаимодействуют во время перемножения. Отличный способ понять внутреннюю механику операций, лежащих в основе ИИ.
Особенности
Ссылка на проект
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
#видео
🤓 Если вы только начинаете заниматься ML/DL и переживаете, что придётся потратить недели на подтягивание математики, поверьте — этого видео вам достаточно.
Это видео длится 5 часов, и этого вполне достаточно, чтобы начать.
📱 Смотреть видео
👉 Новости 👉 База вопросов
Это видео длится 5 часов, и этого вполне достаточно, чтобы начать.
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😇 Google выпустил бесплатный гайд по созданию промптов
От базовых принципов до сложных техник, таких как chain of thought, где LLM строит цепочки решений.
Цитата: «Не нужно быть дата-сайентистом или ML-инженером — каждый может освоить промпты.»
Ссылка на гайд
👉 Новости 👉 База вопросов
От базовых принципов до сложных техник, таких как chain of thought, где LLM строит цепочки решений.
Цитата: «Не нужно быть дата-сайентистом или ML-инженером — каждый может освоить промпты.»
Ссылка на гайд
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
#Собес #TensorFlow
🤔 Как реализовать сверточную нейронную сеть (CNN) в TensorFlow?
Чтобы реализовать CNN в TensorFlow, необходимо определить слои сверточных операций (conv2d), слои максимального объединения (maxpool2d), а также полносвязные слои. После этого модель обучается с использованием функции потерь и оптимизатора. Важным моментом является добавление dropout для предотвращения переобучения.
👉 Новости 👉 База вопросов
Чтобы реализовать CNN в TensorFlow, необходимо определить слои сверточных операций (conv2d), слои максимального объединения (maxpool2d), а также полносвязные слои. После этого модель обучается с использованием функции потерь и оптимизатора. Важным моментом является добавление dropout для предотвращения переобучения.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
#полезное
😴 Сделайте sentence transformers в 50 раз меньше и в 500 раз быстрее
Model2Vec преобразует любой sentence transformer в компактную статическую модель с минимальной потерей качества. Кроме того, он обеспечивает мгновенный векторный поиск по миллионам документов без предварительной индексации.
Полностью с открытым исходным кодом
Гитхаб
👉 Новости 👉 База вопросов
Model2Vec преобразует любой sentence transformer в компактную статическую модель с минимальной потерей качества. Кроме того, он обеспечивает мгновенный векторный поиск по миллионам документов без предварительной индексации.
Полностью с открытым исходным кодом
Гитхаб
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
#полезное
📞 Это база: трансформеры вручную — как понять, что происходит за кулисами LLM
В этом посте разберем, как вручную пройти через процесс работы трансформера, от входных данных до финального слоя.
Пошаговый процесс
1⃣ Исходные данные:
Входные признаки из предыдущего блока (5 позиций).
2⃣ Внимание:
Все 5 признаков передаются в модуль внимания запрос-ключ (QK) для получения матрицы весов внимания (A).
3⃣ Взвешивание внимания:
Умножаем входные данные на матрицу весов внимания, чтобы получить взвешенные признаки (Z). Этим объединяем признаки по горизонтали, например, X1 := X1 + X2, X2 := X2 + X3 и так далее.
4⃣ FFN — первый слой:
Процессинг всех 5 признаков через первый слой. Умножаем их на веса и смещения, увеличивая размерность с 3 до 4, комбинируя признаки по вертикали.
5⃣ ReLU:
Отрицательные значения заменяются нулями.
6⃣ FFN — второй слой:
Подаем данные во второй слой, уменьшаем размерность с 4 до 3 и отправляем результат в следующий блок для повторения процесса.
👉 Новости 👉 База вопросов
В этом посте разберем, как вручную пройти через процесс работы трансформера, от входных данных до финального слоя.
Пошаговый процесс
Входные признаки из предыдущего блока (5 позиций).
Все 5 признаков передаются в модуль внимания запрос-ключ (QK) для получения матрицы весов внимания (A).
Умножаем входные данные на матрицу весов внимания, чтобы получить взвешенные признаки (Z). Этим объединяем признаки по горизонтали, например, X1 := X1 + X2, X2 := X2 + X3 и так далее.
Процессинг всех 5 признаков через первый слой. Умножаем их на веса и смещения, увеличивая размерность с 3 до 4, комбинируя признаки по вертикали.
Отрицательные значения заменяются нулями.
Подаем данные во второй слой, уменьшаем размерность с 4 до 3 и отправляем результат в следующий блок для повторения процесса.
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
#видео
🤯 Короткое видео от
Hunyuan, которое объясняет архитектуру гибридного трансформера Mamba, лежащего в основе моделей Hunyuan T1 и Turbo S.
Оригинал
👉 Новости 👉 База вопросов
Hunyuan, которое объясняет архитектуру гибридного трансформера Mamba, лежащего в основе моделей Hunyuan T1 и Turbo S.
Оригинал
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #TensorFlow
🤔 Что такое eager execution в TensorFlow и какие у него преимущества?
Eager execution в TensorFlow - это режим выполнения, при котором операции выполняются немедленно по мере их вызова в Python. Это упрощает отладку, делает интерфейс более интуитивным и позволяет использовать стандартный контроль потока Python вместо графового контроля, что особенно полезно при создании динамических моделей.
👉 Новости 👉 База вопросов
Eager execution в TensorFlow - это режим выполнения, при котором операции выполняются немедленно по мере их вызова в Python. Это упрощает отладку, делает интерфейс более интуитивным и позволяет использовать стандартный контроль потока Python вместо графового контроля, что особенно полезно при создании динамических моделей.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
#полезное
👍 Cloud․ru выкатил первый сервис для инференса LLM в облаке с разделением GPU
Облачный провайдер анонсировал управляемый сервис Evolution ML Inference с упором на гибкость и эффективность работы с GPU. На платформе впервые в России реализовали технологию Shared GPU, то есть можно будет использовать GPU не полностью, а потреблять только то количество vRAM, которое необходимо модели в конкретный момент.
Такой подход экономит от 15 до 45% ресурсов, а, следовательно, и костов (тарификация осуществляется as-you-go и только в момент обращения к модели).
А еще фишка в том, что на платформе можно будет в пару кликов развернуть не только встроенные модели, но и любую модельку с HF, и даже свою собственную LM.
При этом Cloud․ru берут на себя скейлинг, администрирование и обслуживание инфраструктуры. Плюс никаких проблем с 152-ФЗ: данные хранятся на российских серверах.
👉 Новости 👉 База вопросов
Облачный провайдер анонсировал управляемый сервис Evolution ML Inference с упором на гибкость и эффективность работы с GPU. На платформе впервые в России реализовали технологию Shared GPU, то есть можно будет использовать GPU не полностью, а потреблять только то количество vRAM, которое необходимо модели в конкретный момент.
Такой подход экономит от 15 до 45% ресурсов, а, следовательно, и костов (тарификация осуществляется as-you-go и только в момент обращения к модели).
А еще фишка в том, что на платформе можно будет в пару кликов развернуть не только встроенные модели, но и любую модельку с HF, и даже свою собственную LM.
При этом Cloud․ru берут на себя скейлинг, администрирование и обслуживание инфраструктуры. Плюс никаких проблем с 152-ФЗ: данные хранятся на российских серверах.
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😊 Почему обратимая матрица сохраняет объем в пространстве
🟠 Если рассматривать матрицу с геометрической точки зрения, она выполняет преобразование векторов в n-мерном пространстве. Когда матрица обратима, это означает, что преобразование является биективным, то есть оно не «сжимает» пространство в подпространство меньшей размерности.
🟠 Говоря проще, обратимая матрица сохраняет объем (хотя и может вращать или искажать его), но не уменьшает количество измерений.
🟠 Если ранг матрицы уменьшается, преобразование отображает векторы в пространство меньшей размерности, что означает потерю информации. В геометрии это проявляется в том, что объем пространства «сплющивается» или искажается до нулевого объема, что и приводит к нулевому детерминанту.
👉 Новости 👉 База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
#видео
🤓 Полный краш-курс по MCP для Python-разработчиков
🟠 Что такое MCP и как он устроен
🟠 Как поднять свой MCP-сервер
🟠 Подключение Python-приложений к MCP
🟠 Интеграция LLM-моделей с MCP
🟠 MCP против function calling
🟠 Деплой в Docker
🟠 Управление жизненным циклом
Гайд для тех, кто хочет строить AI-системы на базе MCP и выйти за рамки базовых туториалов
📱 Смотреть тут
👉 Новости 👉 База вопросов
Гайд для тех, кто хочет строить AI-системы на базе MCP и выйти за рамки базовых туториалов
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #TensorFlow
🤔 Какие случаи использования имеет APl tf.data в TensorFlow?
API tf.data в TensorFlow используется для создания сложных конвейеров обработки данных. Он позволяет эффективно работать с большими обьемами данных, поддерживает различные форматы и трансформации. Благодаря поддержке параллельной обработки и предвыборки данных, tf.data ускоряет обучение моделей и позволяет гибко управлять процессом.
👉 Новости 👉 База вопросов
API tf.data в TensorFlow используется для создания сложных конвейеров обработки данных. Он позволяет эффективно работать с большими обьемами данных, поддерживает различные форматы и трансформации. Благодаря поддержке параллельной обработки и предвыборки данных, tf.data ускоряет обучение моделей и позволяет гибко управлять процессом.
Please open Telegram to view this post
VIEW IN TELEGRAM
#новости
🥺 Anthropic инвестируют 50 миллионов долларов в интерпретируемость LLM
Точнее в стартап Goodfire, который специализируется на интерпретируемости. Вместе с Anthropic они теперь будут разрабатывать общедоступную платформу нейронного программирования Ember, которая сможет показывать «мысли» любой ИИ-модели.
Это, кстати, первая инвестиция Anthropic за все время существования компании
👉 Новости 👉 База вопросов
Точнее в стартап Goodfire, который специализируется на интерпретируемости. Вместе с Anthropic они теперь будут разрабатывать общедоступную платформу нейронного программирования Ember, которая сможет показывать «мысли» любой ИИ-модели.
Это, кстати, первая инвестиция Anthropic за все время существования компании
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😬 Подключите любую LLM к любому MCP-серверу
MCP-Use — это open-source способ подключить любую LLM к любому MCP-серверу и создавать кастомных агентов с доступом к инструментам без использования проприетарных решений или клиентских приложений.
Создавайте полностью локальные MCP-клиенты
👉 Новости 👉 База вопросов
MCP-Use — это open-source способ подключить любую LLM к любому MCP-серверу и создавать кастомных агентов с доступом к инструментам без использования проприетарных решений или клиентских приложений.
Создавайте полностью локальные MCP-клиенты
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
#полезное
😐 Стэнфорд выкатил свежий курс по LLM — CS336: Language Modeling from Scratch
Курс с фокусом на практику: вся теория по LLM раскрывается через создание собственной модели. Ты изучаешь всё end-to-end — от обработки данных и архитектуры трансформеров до RL и эвала
Ведёт курс Перси Лианг — профессор Стэнфорда и сооснователь TogetherAI.
Курс прямо сейчас идёт в Стэнфорде, и лекции заливаются по ходу — контент свежий, как только из печи
Первые лекции здесь, а домашка и ноутбуки — тут.
👉 Новости 👉 База вопросов
Курс с фокусом на практику: вся теория по LLM раскрывается через создание собственной модели. Ты изучаешь всё end-to-end — от обработки данных и архитектуры трансформеров до RL и эвала
Ведёт курс Перси Лианг — профессор Стэнфорда и сооснователь TogetherAI.
Курс прямо сейчас идёт в Стэнфорде, и лекции заливаются по ходу — контент свежий, как только из печи
Первые лекции здесь, а домашка и ноутбуки — тут.
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #TensorFlow
🤔 Как использование графов потока данных в TensorFlow помогает в разработке моделей машинного обучения?
Графы данных в TensorFlow позволяют эффективно выполнять вычисления, улучшать параллельность и обеспечивать переносимость. Графы представляют вычисления как узлы, соединенные ребрами, что позволяет TensorFlow распределять вычисления по нескольким процессорам и GPU, повышая эффективность. Кроме того, абстракция графов упрощает создание моделей без необходимости учитывать аппаратные особенности.
👉 Новости 👉 База вопросов
Графы данных в TensorFlow позволяют эффективно выполнять вычисления, улучшать параллельность и обеспечивать переносимость. Графы представляют вычисления как узлы, соединенные ребрами, что позволяет TensorFlow распределять вычисления по нескольким процессорам и GPU, повышая эффективность. Кроме того, абстракция графов упрощает создание моделей без необходимости учитывать аппаратные особенности.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#видео
😎 Эта лекция о больших языковых моделях (LLM) обязательна к просмотру для инженеров в области ИИ.
Полуторачасовая лекция охватывает: токенизацию, законы масштабирования, дообучение, оценку, оптимизацию, вызовы, затраты и многое другое.
От Стэнфорда, около 1 млн просмотров
📱 Смотреть видео
👉 Новости 👉 База вопросов
Полуторачасовая лекция охватывает: токенизацию, законы масштабирования, дообучение, оценку, оптимизацию, вызовы, затраты и многое другое.
От Стэнфорда, около 1 млн просмотров
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
👨💻 Этот репозиторий на GitHub — настоящая находка для ML-специалистов
Репозиторий Kaggle Solutions собирает решения и идеи от лучших участников прошлых соревнований Kaggle. Список регулярно обновляется после каждого соревнования.
Он охватывает интервью по машинному обучению, лекции и решения
Гитхаб
👉 @DataSciencegx
Репозиторий Kaggle Solutions собирает решения и идеи от лучших участников прошлых соревнований Kaggle. Список регулярно обновляется после каждого соревнования.
Он охватывает интервью по машинному обучению, лекции и решения
Гитхаб
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #TensorFlow
🤔 Объясните, чем TensorFlow отличается от других платформ машинного обучения
TensorFlow отличается гибкостью и масштабируемостью. Он поддерживает широкий спектр нейронных сетей и алгоритмов, что делает его универсальным для различных задач. Благодаря модели вычислительных графов TensorFlow можно эффективно обрабатывать вычисления параллельно, что улучшает производительность на крупных системах. Также TensorFlow предоставляет инструменты для отладки и оптимизации моделей, такие как TensorBoard, и поддерживает развертывание на мобильных устройствах и вебе.
👉 Новости 👉 База вопросов
TensorFlow отличается гибкостью и масштабируемостью. Он поддерживает широкий спектр нейронных сетей и алгоритмов, что делает его универсальным для различных задач. Благодаря модели вычислительных графов TensorFlow можно эффективно обрабатывать вычисления параллельно, что улучшает производительность на крупных системах. Также TensorFlow предоставляет инструменты для отладки и оптимизации моделей, такие как TensorBoard, и поддерживает развертывание на мобильных устройствах и вебе.
Please open Telegram to view this post
VIEW IN TELEGRAM