This media is not supported in your browser
VIEW IN TELEGRAM
#новости
👋 В Китае закончился первый в мире полу-марафон для людей и роботов
Участие приняли более 20 двуногих роботов. Были и от ведущих китайских стартапов, но даже победители очень сильно отставали от людей (фух).
Пробежать нужно было, если что, 21 километр. Победитель от людей преодолел расстояние за 1 час 2 минуты. От роботов победил Tiangong Ultra. Его результат – 2 часа 40 минут.
👉 Новости 👉 База вопросов
Участие приняли более 20 двуногих роботов. Были и от ведущих китайских стартапов, но даже победители очень сильно отставали от людей (фух).
Пробежать нужно было, если что, 21 километр. Победитель от людей преодолел расстояние за 1 час 2 минуты. От роботов победил Tiangong Ultra. Его результат – 2 часа 40 минут.
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
📞 Вышел Qwen-3, встречаем новую открытую соту
Выпустили 2 MoE и 6 dense моделей в весах на любой вкус, 0.6В до 235B. Разбираем.
Самая большая модель на уровне со всеми звездами – Gemini 2.5 Pro, Grok-3, o1, R1. И это MoE всего с 22В активных параметров. На 30В MoE модель тоже крутая получилась: на бенчах видно, что она лучше предыдущего ризонера QwQ-32B (при этом активных параметров у нее всего 3В, то есть в 10 раз меньше).
Что еще стоит знать:
1⃣ Это полу-ризонеры, Sonnet 3.7 или Gemini 2.5 Pro. То есть модель будет «думать», если задать мод think, и не думать, если задать Non-Thinking. Бюджет рассуждений тоже можно контролировать.
2⃣ Модели мультиязычные (русский тоже есть), но не мультимодальные. Довольствуемся тем, что есть.
3⃣ Улучшены агентные способности на уровне поиска в браузере, использования интерпретатора и др. Что особенно приятно – добавили поддержку MCP.
4⃣ Претрейнинг был в три этапа: сначала на 30 триллионах токенов с контекстом 4К, затем отдельно на сложных научных текстах (5Т), потом на длинных контекстах до 32К токенов.
5⃣ Пост-трейнинг: файн-тюнинг на CoT + несколько стадий RL. Интересно, что мелкие модели до 30В обучали дистилляцией из крупных.
В общем, пробуем и наслаждаемся здесь
👉 Новости 👉 База вопросов
Выпустили 2 MoE и 6 dense моделей в весах на любой вкус, 0.6В до 235B. Разбираем.
Самая большая модель на уровне со всеми звездами – Gemini 2.5 Pro, Grok-3, o1, R1. И это MoE всего с 22В активных параметров. На 30В MoE модель тоже крутая получилась: на бенчах видно, что она лучше предыдущего ризонера QwQ-32B (при этом активных параметров у нее всего 3В, то есть в 10 раз меньше).
Что еще стоит знать:
В общем, пробуем и наслаждаемся здесь
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #TensorFlow
🤔 Как использовать Keras APl в TensorFlow для создания моделей глубокого обучения?
Keras - это высокоуровневый АР| в TensorFlow, который упрощает создание, обучение и развертывание нейросетей. Чтобы создать модель, используется класс
👉 Новости 👉 База вопросов
Keras - это высокоуровневый АР| в TensorFlow, который упрощает создание, обучение и развертывание нейросетей. Чтобы создать модель, используется класс
Sequential или функциональный АРІ. Добавляются слои ( Dense , Conv2D и др.), затем модель компилируется с помощью compile() , указывая функцию потерь и оптимизатор. Обучение выполняется через fit() , оценка через evaluate() , а прогнозирование через predict() . Keras APl делает разработку моделей более удобной и читаемой.Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
🤯 MLOps без воды: готовый пошаговый план
Готовый GitHub-репозиторий, который по шагам закрывает ключевые темы: от настройки проекта и контроля данных — до CI/CD, упаковки моделей и деплоя в AWS:
✅ Неделя 0: Базовая настройка проекта
✅ Неделя 1: Мониторинг моделей через Weights & Biases
✅ Неделя 2: Конфигурации с Hydra
✅ Неделя 3: Контроль версий данных с DVC
✅ Неделя 4: Упаковка моделей в ONNX
✅ Неделя 5: Упаковка моделей в Docker
✅ Неделя 6: CI/CD через GitHub Actions
✅ Неделя 7: Хранение контейнеров в AWS ECR
✅ Неделя 8: Серверлесс-деплой на AWS Lambda
✅ Неделя 9: Мониторинг предсказаний через Kibana
Ссылка на репозиторий
👉 Новости 👉 База вопросов
Готовый GitHub-репозиторий, который по шагам закрывает ключевые темы: от настройки проекта и контроля данных — до CI/CD, упаковки моделей и деплоя в AWS:
Ссылка на репозиторий
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#полезное
😇 TransPixar — новая нейросеть, способная генерировать видео с прозрачным фоном. Это идеально для создания спрайтов в видеоиграх!
Демо: *клик*
Гитхаб
👉 Новости 👉 База вопросов
Демо: *клик*
Гитхаб
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😱 llm-scraper — библиотека на языке TypeScript, предназначенная для извлечения структурированных данных с веб-страниц с использованием LLM!
Библиотека поддерживает различные провайдеры LLM, включая локальные модели (Ollama, GGUF), OpenAI и Vercel AI SDK. Для определения схем данных используется библиотека Zod, обеспечивая полную типизацию в TypeScript. В основе работы llm-scraper лежит фреймворк Playwright, который управляет взаимодействием с веб-страницами.
Гитхаб
👉 Новости 👉 База вопросов
Библиотека поддерживает различные провайдеры LLM, включая локальные модели (Ollama, GGUF), OpenAI и Vercel AI SDK. Для определения схем данных используется библиотека Zod, обеспечивая полную типизацию в TypeScript. В основе работы llm-scraper лежит фреймворк Playwright, который управляет взаимодействием с веб-страницами.
Гитхаб
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #TensorFlow
🤔 Что такое TensorFlow Transform (tf. Transform) и какие проблемы он решает?
TensorFlow Transform (
👉 Новости 👉 База вопросов
TensorFlow Transform (
tf.Transform ) - это библиотека для предварительной обработки данных в TensorFlow. Она позволяет применять те же преобразования данных как во время обучения, так и при инференсе, что устраняет несоответствия между обработкой данных в разных этапах. tf.Transform особенно полезен при работе с большими наборами данных, так как выполняет масштабируемые преобразования, которые не помещаются в память. Основное преимущество - автоматическое включение предобработки в экспортированную модель, что делает её консистентной.Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#полезное
😊 GPUStack — это менеджер кластеров GPU с открытым исходным кодом для запуска и масштабирования AI моделей.
🟠 Универсальность: Поддерживает работу на разных платформах, включая macOS, Windows и Linux.
🟠 Масштабируемость: Позволяет легко добавлять дополнительные GPU или узлы для увеличения вычислительных мощностей.
🟠 Широкий спектр моделей: Поддерживает запуск больших языковых моделей (LLM), диффузионных моделей, аудио-, embedding и reranker моделей.
🟠 Несколько бекендов: Использует такие решения, как llama-box, vLLM и vox-box для инференса.
🟠 OpenAI-совместимые API: Предоставляет API, совместимые с OpenAI, что облегчает интеграцию с различными приложениями и сервисами.
🟠 Мониторинг и управление: Включает инструменты для отслеживания производительности GPU, использования токенов и управления пользователями и API-ключами.
Гитхаб
👉 Новости 👉 База вопросов
Гитхаб
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😬 Топ на выходные: 3 сайта с задачками для прокачки ML-навыков
Линейная алгебра, machine и deep learning — разный уровень сложности: задачи отсортированы по Easy, Mediums и Hard. Автоматическая проверка и подсказки в комплекте
Deep-ML, Tensorgym и ML cекция на NeetCode — не благодарите
👉 Новости 👉 База вопросов
Линейная алгебра, machine и deep learning — разный уровень сложности: задачи отсортированы по Easy, Mediums и Hard. Автоматическая проверка и подсказки в комплекте
Deep-ML, Tensorgym и ML cекция на NeetCode — не благодарите
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
🫠 Внутренности PyTorch
Подробное руководство о том, как разобраться в кодовой базе PyTorch и начать вносить вклад в её развитие
Тык сюда
👉 Новости 👉 База вопросов
Подробное руководство о том, как разобраться в кодовой базе PyTorch и начать вносить вклад в её развитие
Тык сюда
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #TensorFlow
🤔 Как TensorFlow использует GPU и TPU для вычислений?
TensorFlow использует:
-
-
- Динамическое распределение вычислений между устройствами.
👉 Новости 👉 База вопросов
TensorFlow использует:
-
GPU (через CUDA) для ускоренных матричных операций.-
TPU (специальные чипы от Google) для высокопроизводительных ML-задач.- Динамическое распределение вычислений между устройствами.
Please open Telegram to view this post
VIEW IN TELEGRAM
#статьи
🛞 Огромная статья, которая посвящена оптимизации вывода (инференса) больших языковых моделей (LLM) с использованием одного графического процессора!
Автор делится опытом создания собственного движка для LLM на основе C++ и CUDA, фокусируясь на максимизации пропускной способности. Рассматриваются ключевые этапы, такие как загрузка модели, выполнение прямого прохода, использование кеша KV и многозадачность на CPU. Также подчеркивается важность пропускной способности памяти и квантования модели (например, FP16) для эффективного вывода. В статье приводятся бенчмарки и сравнение с другими фреймворками, такими как llama.cpp и Hugging Face, чтобы установить реалистичные цели по производительности.
Ссылка клик
👉 Новости 👉 База вопросов
Автор делится опытом создания собственного движка для LLM на основе C++ и CUDA, фокусируясь на максимизации пропускной способности. Рассматриваются ключевые этапы, такие как загрузка модели, выполнение прямого прохода, использование кеша KV и многозадачность на CPU. Также подчеркивается важность пропускной способности памяти и квантования модели (например, FP16) для эффективного вывода. В статье приводятся бенчмарки и сравнение с другими фреймворками, такими как llama.cpp и Hugging Face, чтобы установить реалистичные цели по производительности.
Ссылка клик
Please open Telegram to view this post
VIEW IN TELEGRAM
#новости
😎 Мира Мурати получит 2 миллиарда долларов от крупнейшнего венчурного фонда a16z
Оценка при этом составит 10 миллиардов. Но самое занятное в этой сделке – ее условия, на которые чудом согласились инвесторы.
Дело в том, что Мира сохраняет за собой математическое абсолютное превосходство над советом директоров. Ее голос в совете равен (кол-во членов совета + 1), то есть он будет решающим в любом голосовании, даже если все остальные проголосуют иначе.
Кроме того, все учредители-основатели владеют акциями, повышающими их обычное количество голосов в 100 раз, а Мира может пользоваться этими голосами по доверенности. А значит, ей хватает прав в одиночку уволить или назначить кого угодно в совет.
👉 Новости 👉 База вопросов
Оценка при этом составит 10 миллиардов. Но самое занятное в этой сделке – ее условия, на которые чудом согласились инвесторы.
Дело в том, что Мира сохраняет за собой математическое абсолютное превосходство над советом директоров. Ее голос в совете равен (кол-во членов совета + 1), то есть он будет решающим в любом голосовании, даже если все остальные проголосуют иначе.
Кроме того, все учредители-основатели владеют акциями, повышающими их обычное количество голосов в 100 раз, а Мира может пользоваться этими голосами по доверенности. А значит, ей хватает прав в одиночку уволить или назначить кого угодно в совет.
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#полезное
😵💫 PySpur
PySpur — это полезны и легкий инструмент для создания и управления рабочими процессами, с минимальным количеством зависимостей.
Он позволяет легко добавлять новые узлы через файл на Python и использует формат JSON для настройки графов.
Инструмент поддерживает асинхронное выполнение задач, работу с несколькими модальностями данных и оптимизацию конвейеров. Кроме того, он предоставляет возможность генерации узлов с использованием технологий искусственного интеллекта.
Гитхаб
👉 Новости 👉 База вопросов
PySpur — это полезны и легкий инструмент для создания и управления рабочими процессами, с минимальным количеством зависимостей.
Он позволяет легко добавлять новые узлы через файл на Python и использует формат JSON для настройки графов.
Инструмент поддерживает асинхронное выполнение задач, работу с несколькими модальностями данных и оптимизацию конвейеров. Кроме того, он предоставляет возможность генерации узлов с использованием технологий искусственного интеллекта.
Гитхаб
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #TensorFlow
🤔 Как развернуть модель TensorFlow в продакшене?
Развертывание модели TensorFlow включает:
- Обучение и сохранение модели (
- Загрузку в TensorFlow Serving для АР|-запросов.
- Интеграцию с клиентским приложением через REST или gRPC.
- Мониторинг и обновление модели при необходимости.
👉 Новости 👉 База вопросов
Развертывание модели TensorFlow включает:
- Обучение и сохранение модели (
SavedModel ).- Загрузку в TensorFlow Serving для АР|-запросов.
- Интеграцию с клиентским приложением через REST или gRPC.
- Мониторинг и обновление модели при необходимости.
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😊 Один из лучших гайдов по выборке в больших языковых моделях (LLM Sampling) вышел, написанный создателем движка инференса Aphrodite (этот парень реально обожает сэмплеры)
Ссылка тут
👉 Новости 👉 База вопросов
Ссылка тут
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
📞 Создание трансформера с нуля
Реализация и подробное объяснение трансформера, с расчётом на полное отсутствие предварительных знаний.
👉 Новости 👉 База вопросов
Реализация и подробное объяснение трансформера, с расчётом на полное отсутствие предварительных знаний.
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - DorsaRoh/Machine-Learning: ML from scratch
ML from scratch. Contribute to DorsaRoh/Machine-Learning development by creating an account on GitHub.
#полезное
❤️🔥 Cookiecutter Data Science v2: быстрый старт для ML-проектов
Cookiecutter Data Science — это шаблон проекта, который помогает быстро, логично и по best practices стартовать любой Data Science-проект.
Почему стоит попробовать:
🟠 Стандартизирует пайплайны и артефакты по всей команде
🟠 CLI ccds автоматизирует создание структуры: больше никакого «копипаста» старого проекта
🟠 Конфигурируется под стек: pip/conda, black/ruff, лицензии, S3/MLflow — всё на входе
🟠 Упор на воспроизводимость и читаемость (особенно при handover между командами)
Простая установка:
Пример запуска:
Дальше — просто отвечаете на вопросы. В результате получаете полностью готовую структуру: с README, тестами, логированием, конфигами и даже поддержкой MLflow.
Документация
👉 Новости 👉 База вопросов
Cookiecutter Data Science — это шаблон проекта, который помогает быстро, логично и по best practices стартовать любой Data Science-проект.
Почему стоит попробовать:
Простая установка:
pipx install cookiecutter-data-science
ccds
Пример запуска:
ccds https://github.com/drivendataorg/cookiecutter-data-science
Дальше — просто отвечаете на вопросы. В результате получаете полностью готовую структуру: с README, тестами, логированием, конфигами и даже поддержкой MLflow.
Документация
Please open Telegram to view this post
VIEW IN TELEGRAM