Please open Telegram to view this post
VIEW IN TELEGRAM
#новости
🤯 Это DeepSeek moment для Deep Research: Perplexity выпустила бесплатный аналог агента OpenAI
Он, также как и Deep Research, может на основе n-минутного похода в интернет создавать подробные отчеты по любому вашему вопросу. С названием Perplexity тоже не запаривались
В день фри юзерам доступно 5 запросов, подписчикам (20$) – 500. Для сравнения, у OpenAI DR доступен только в подписке за 200$, и за эти деньги дают 100 запросов в месяц, то есть в 150 раз меньше.
По бенчмарку Humanity’s Last Exam DR от Perplexity почти догоняет аналог от OpenAI, выбивая 21.1%. На графике видно, что это больше, чем у o1-mini high, R1 и o1 (хотя это разные продукты и сравнивать не то чтобы уместно).
Пишут также, что большинство тасок DR от Perplexity заканчивает за 3 минуты. У OpenAI это обычно 10-20.
Пробуем здесь
👉 Новости 👉 Платформа
Он, также как и Deep Research, может на основе n-минутного похода в интернет создавать подробные отчеты по любому вашему вопросу. С названием Perplexity тоже не запаривались
В день фри юзерам доступно 5 запросов, подписчикам (20$) – 500. Для сравнения, у OpenAI DR доступен только в подписке за 200$, и за эти деньги дают 100 запросов в месяц, то есть в 150 раз меньше.
По бенчмарку Humanity’s Last Exam DR от Perplexity почти догоняет аналог от OpenAI, выбивая 21.1%. На графике видно, что это больше, чем у o1-mini high, R1 и o1 (хотя это разные продукты и сравнивать не то чтобы уместно).
Пишут также, что большинство тасок DR от Perplexity заканчивает за 3 минуты. У OpenAI это обычно 10-20.
Пробуем здесь
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#собес
🤔 Как работает градиентный бустинг для регрессии?
Градиентный бустинг для регрессии строит ансамбль слабых моделей (обычно деревьев решений), добавляя каждую новую модель так, чтобы минимизировать ошибку предыдущих. Процесс:
🟠 Инициализация модели начальным прогнозом (например, средним значением целевой переменной).
🟠 Вычисление остаточной ошибки (разница между прогнозами и фактическими значениями).
🟠 Обучение нового дерева для предсказания этой ошибки.
🟠 Итеративное добавление деревьев с уменьшением шага обновления (learning rate) для улучшения общей точности.
👉 Новости 👉 Платформа
Градиентный бустинг для регрессии строит ансамбль слабых моделей (обычно деревьев решений), добавляя каждую новую модель так, чтобы минимизировать ошибку предыдущих. Процесс:
Please open Telegram to view this post
VIEW IN TELEGRAM
Anonymous Quiz
30%
One-hot encoding
40%
K-means
10%
PCA
20%
Логистическая регрессия
❤1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес
🤔 Что такое Scikit-Learn и почему стоит использовать его вместо других библиотек машинного обучения?
Scikit-Learn - это библиотека машинного обучения на Python, основанная на NumPy, SciPy и Matplotlib. Она предоставляет удобные и эффективные инструменты для
анализа данных и моделирования. Scikit-Learn выделяется простым и единообразным API, хорошей документацией и активным сообществом. В библиотеку встроены алгоритмы классификации, регрессии, кластеризации, снижения размерности, обработки данных и оценки моделей. Благодаря этим особенностям она подходит как для новичков, так и для опытных специалистов.
👉 Новости 👉 Платформа
Scikit-Learn - это библиотека машинного обучения на Python, основанная на NumPy, SciPy и Matplotlib. Она предоставляет удобные и эффективные инструменты для
анализа данных и моделирования. Scikit-Learn выделяется простым и единообразным API, хорошей документацией и активным сообществом. В библиотеку встроены алгоритмы классификации, регрессии, кластеризации, снижения размерности, обработки данных и оценки моделей. Благодаря этим особенностям она подходит как для новичков, так и для опытных специалистов.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
#полезное
👋 Shuffle Feature Importance: простая методика оценки важности признаков
Shuffle Feature Importance — интуитивно понятный метод оценки значимости признаков в модели машинного обучения. Он основан на анализе того, насколько ухудшается качество модели после случайного перемешивания значений конкретного признака.
Как это работает
🟠 Обучение модели и оценка её качества (P₁) на исходных данных.
🟠 Перемешивание одного признака (shuffle) и повторная оценка качества модели (P₂).
🟠 Расчёт важности признака: разница между исходным и новым качеством модели (P₁ — P₂).
🟠 Повторение процедуры для всех признаков, чтобы получить сравнительную значимость.
Чем сильнее падает качество после перемешивания, тем важнее признак для модели!
👉 Новости 👉 Платформа
Shuffle Feature Importance — интуитивно понятный метод оценки значимости признаков в модели машинного обучения. Он основан на анализе того, насколько ухудшается качество модели после случайного перемешивания значений конкретного признака.
Как это работает
Чем сильнее падает качество после перемешивания, тем важнее признак для модели!
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
#новости
🤯 Google сделали для Gemini бесконечную память
Это значит, что теперь там крутится умный и оптимизированный RAG и можно сослаться на любой разговор в другом чате, который был сколь угодно давно. Более того, бот может вспомнить что угодно, что было в ваших диалогах, сам, если поймет, что тема разговора схожая.
Правда, для того, чтобы активировать бесконечную память, потребуется подписка Advanced, и пока это работает только с Flash моделью. Но все равно очень круто.
OpenAI, кстати, недавно говорили, что работают над такой же фишкой.
👉 Новости 👉 Платформа
Это значит, что теперь там крутится умный и оптимизированный RAG и можно сослаться на любой разговор в другом чате, который был сколь угодно давно. Более того, бот может вспомнить что угодно, что было в ваших диалогах, сам, если поймет, что тема разговора схожая.
Правда, для того, чтобы активировать бесконечную память, потребуется подписка Advanced, и пока это работает только с Flash моделью. Но все равно очень круто.
OpenAI, кстати, недавно говорили, что работают над такой же фишкой.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
#новости
😊 Элаймент, который мы заслужили: новый Grok-3 при удобном случае унижает конкурентов Маска
В своем твиттере Илон сам показал пример: модель называет издательство The Information мусором и говорит, что лучше читать X. Кажется, кого-то файнтюнили прямо на твитах начальника.
👉 Новости 👉 Платформа
В своем твиттере Илон сам показал пример: модель называет издательство The Information мусором и говорит, что лучше читать X. Кажется, кого-то файнтюнили прямо на твитах начальника.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🔥2🫡1
#Собес
🤔 Как использовать Scikit-Learn для выбора признаков в наборе данных?
Scikit-Learn предоставляет несколько методов для выбора признаков. Один из них - это
можно использовать
👉 Новости 👉 Платформа
Scikit-Learn предоставляет несколько методов для выбора признаков. Один из них - это
VarianceThreshold , который удаляет признаки с низкой дисперсией. Такжеможно использовать
Recursive Feature Elimination (RFE) , который обучает модель и удаляет наименее важные признаки. Другой метод - это Univariate Feature Selection, который выбирает лучшие признаки с помощью статистических тестов, таких как хи-квадрат. Наконец, SelectFromModel позволяет выбрать признаки на основе их важности.Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Please open Telegram to view this post
VIEW IN TELEGRAM
#новости
🫠 В Китае придумали, как соединить LLM с диффузией
На сегодняшний день все модели работают авторегрессионно, то есть предсказывают следующие токены один за одним на основе предыдущих. Это задача next token prediction. Но исследователи из Китая предложили другой подход к обучению и назвали его LLaDA.
Это похоже на то, как обучался BERT: берется исходная последовательность текста, затем токены в ней маскируются с определенной веростностью, а модель пытается их угадать (расшумляет, как в диффузии). Таким образом получается как бы двунапревленный аттеншен к контексту.
Интуитивно кажется: ну и что? Ведь во время инференса модель все равно начинает с полностью замаскированной последовательности. Но нет: дело в том, что LLaDA не просто предсказывает следующий токен, а постепенно реконструирует весь текст в том порядке, в котором ей "удобно".
Получается неплохая альтернатива, и масштабируется приемлемо. Например, LLaDA 8B превосходит LLaMA2 7B почти по всем стандартным задачам и в целом сопоставима с LLaMA3 8B. А в таких тестах, как написание стихов, превосходит даже GPT-4o. При этом ее также эффективно можно файнтюнить.
Пдф тык
👉 Новости 👉 Платформа
На сегодняшний день все модели работают авторегрессионно, то есть предсказывают следующие токены один за одним на основе предыдущих. Это задача next token prediction. Но исследователи из Китая предложили другой подход к обучению и назвали его LLaDA.
Это похоже на то, как обучался BERT: берется исходная последовательность текста, затем токены в ней маскируются с определенной веростностью, а модель пытается их угадать (расшумляет, как в диффузии). Таким образом получается как бы двунапревленный аттеншен к контексту.
Интуитивно кажется: ну и что? Ведь во время инференса модель все равно начинает с полностью замаскированной последовательности. Но нет: дело в том, что LLaDA не просто предсказывает следующий токен, а постепенно реконструирует весь текст в том порядке, в котором ей "удобно".
Получается неплохая альтернатива, и масштабируется приемлемо. Например, LLaDA 8B превосходит LLaMA2 7B почти по всем стандартным задачам и в целом сопоставима с LLaMA3 8B. А в таких тестах, как написание стихов, превосходит даже GPT-4o. При этом ее также эффективно можно файнтюнить.
Пдф тык
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес
🤔 Какие ключевые различия между алгоритмами с обучением с учителем и без учителя в Scikit- Learn?
Алгоритмы с обучением с учителем в Scikit-Learn требуют меток для данных, что позволяет им предсказывать результаты на основе известных связей между входными и выходными данными. Примеры таких алгоритмов - это регрессия и классификация. Алгоритмы без учителя не требуют меток и используются для поиска скрытых структур в данных, таких как кластеризация и снижение размерности. Примеры: К- средних и РСА.
👉 Новости 👉 Платформа
Алгоритмы с обучением с учителем в Scikit-Learn требуют меток для данных, что позволяет им предсказывать результаты на основе известных связей между входными и выходными данными. Примеры таких алгоритмов - это регрессия и классификация. Алгоритмы без учителя не требуют меток и используются для поиска скрытых структур в данных, таких как кластеризация и снижение размерности. Примеры: К- средних и РСА.
Please open Telegram to view this post
VIEW IN TELEGRAM
#новости
😊 Итак, GPT-4.5 вышла
Еще раз: в сравнении с o1 на математике и кодинге модель хуже (неудивительно, это другой подход). Но нельзя бесконечно скейлить только ризонинг, и, с другой стороны, это самая большая и самая накаченная знаниями о мире модель. Она поглотила МНОГО текста и лучше подходит для простых нетехнических задач, креатива, написания текстов, социального взаимодействия и просто разговоров. То есть, это лучшая модель для НЕайти обывателя.
Отдельно отмечают глубокий элаймент и то, что модель стала безопаснее и этичнее. Ее долго тюнили на предпочтения, и ответы получаются емкие и естественные. Кроме того, в GPT-4.5 сократили процент галлюцинаций.
Пока доступно только Pro, в течение следующей недели добавят в плюс и тим. В API завезут сегодня, цены пока ждем
Блог
👉 Новости 👉 Платформа
Еще раз: в сравнении с o1 на математике и кодинге модель хуже (неудивительно, это другой подход). Но нельзя бесконечно скейлить только ризонинг, и, с другой стороны, это самая большая и самая накаченная знаниями о мире модель. Она поглотила МНОГО текста и лучше подходит для простых нетехнических задач, креатива, написания текстов, социального взаимодействия и просто разговоров. То есть, это лучшая модель для НЕайти обывателя.
Отдельно отмечают глубокий элаймент и то, что модель стала безопаснее и этичнее. Ее долго тюнили на предпочтения, и ответы получаются емкие и естественные. Кроме того, в GPT-4.5 сократили процент галлюцинаций.
Пока доступно только Pro, в течение следующей недели добавят в плюс и тим. В API завезут сегодня, цены пока ждем
Блог
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM