DS & ML | YeaHub – Telegram
DS & ML | YeaHub
466 subscribers
259 photos
67 videos
371 links
Теория, подготовка к интервью и курсы для Data Science специалистов

YeaHub — это платформа для IT-специалистов, объединяющая обучение, карьерный рост, развитие и сообщество единомышленников.

Платформа: https://yeahub.ru

Для связи: @ruslan_kuyanets
Download Telegram
#Собес #pytorch
🤔 Можете ли вы объяснить, как работает автоматическое дифференцирование и обратное распространение в PyTorch?

💬 Кратко:
PyTorch использует автоматическое дифференцирование для вычисления градиентов, необходимым для обратного распространения ошибки. Каждый оператор на тензорах записывается в вычислительный граф, и когда вызывается backward (), PyTorch вычисляет градиенты, двигаясь по графу с конца к началу, используя правило цепочки. Это позволяет эффективно вычислять и хранить градиенты для всех параметров с флагом requires_grad=True.

📌 Полный разбор + примеры использования — на платформе:
👉
Перейти к разбору

📣 Хочешь получать больше таких разборов?
Подпишись на наш главный канал
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#полезное
😊 MCP-серверы могут предоставлять богатые UI-возможности

MCP-серверы в Claude/Cursor пока не предлагают никакого UI, например, графики. Это просто текст/JSON.

mcp-ui позволяет добавлять в вывод интерактивные веб-компоненты, которые может отрендерить MCP-клиент.
Забираем с GitHub

👉Новости 👉База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😇 Тонкости гиперпараметрического тюнинга

Хотите ускорить обучение XGBoost в 5–15 раз и при этом находить лучшие гиперпараметры?

В свежем видео показывают:
🟡 как использовать Optuna для автоматического тюнинга XGBoost,
🟡 почему кросс-валидация критична для реальных задач,
🟡 какие приёмы тюнинга реально работают,
🟡 и как визуализации Optuna помогают выявлять самые важные гиперпараметры.

Особый акцент — на GPU-ускорении XGBoost 3.0, которое радикально сокращает время экспериментов в табличных задачах.
Ссылка на туториал

👉Новости 👉База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #pytorch
🤔 Как реализовать собственный слой в PyTorch? Можете привести пример?

💬 Кратко:
Чтобы реализовать собственный слой в PyTorch, нужно создать класс, унаследованный от nn.Module, и определить два метода: init () для инициализации параметров и forward () для описания вычислений. Примером может служить простой линейный слой, реализованный с использованием матричного умножения и добавления смещения.

📌 Полный разбор + примеры использования — на платформе:
👉
Перейти к разбору

📣 Хочешь получать больше таких разборов?
Подпишись на наш главный канал
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
👋 Память под контролем: RamTorch для обучения больших моделей

PyTorch library для памяти-эффективного Deep Learning, позволяющая обучать и запускать большие модели, которые не помещаются в GPU-память.

RamTorch предоставляет гибридные CPU-GPU реализации компонентов нейросетей: параметры хранятся в CPU и передаются на GPU по мере необходимости.

Такой подход значительно снижает использование GPU-памяти при сохранении высокой вычислительной эффективности за счет асинхронных CUDA потоков и интеллектуальной пакетной обработки.

Ключевые возможности
:
🔵 Память-эффективные линейные слои: параметры на CPU, GPU только по необходимости
🔵 Асинхронные CUDA потоки: перекрытие вычислений и передачи данных для минимальной задержки
🔵 Поддержка ZeRO-1 Optimizer: распределение состояния оптимизатора по нескольким GPU
🔵 Drop-in замена: совместимо с существующим кодом PyTorch

Установка:
pip install ramtorch


Простой пример:
import torch
from ramtorch import Linear

# Standard PyTorch approach (high GPU memory usage)
# linear = torch.nn.Linear(1000, 1000)

# RamTorch approach (low GPU memory usage)
linear = Linear(1000, 1000, device="cuda")

# Use exactly like a normal PyTorch layer
x = torch.randn(32, 1000, device="cuda")
output = linear(x) # Parameters automatically transferred from CPU to GPU

Репозиторий

👉Новости 👉База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
🤯 Генеративные vs. дискриминативные модели в ML

👉Новости 👉База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #pytorch
🤔 Как использовать GPU для вычислений в PyTorch?

💬 Кратко:
Для использования GPU в PyTorch необходимо убедиться, что на компьютере установлен CUDA и PyTorch с поддержкой GPU. Тензоры и модели можно перемещать на GPU с помощью метода .cuda (). Важно, чтобы все тензоры и модель находились на одном устройстве — либо на CPU, либо на GPU.

📌 Полный разбор + примеры использования — на платформе:
👉
Перейти к разбору

📣 Хочешь получать больше таких разборов?
Подпишись на наш главный канал
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
🛞 Эта статья Себастьяна Рашки пошагово проводит через реализацию self-attention с нуля, далее расширяя разбор до multi-head и cross-attention, с понятными объяснениями и примерами кода на PyTorch.

Обязательное чтение, если хотите глубоко разобраться в трансформерах. Читайте здесь

👉Новости 👉База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😊 3 ключевые свойства следа матрицы в Deep Learning

1⃣ L2-регуляризация: Квадрат нормы Фробениуса, ||W||² = tr(WᵀW), используется для штрафования больших весов и предотвращения переобучения.

2⃣Вычисление градиентов: Циклическое свойство следа, tr(AB) = tr(BA), упрощает вывод матричных производных при обратном распространении ошибки (backpropagation).

3⃣ Инвариантность: След инвариантен к замене базиса, tr(P⁻¹AP) = tr(A); это свойство используется при поиске нового, более удобного базиса в PCA.

👉Новости 👉База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#полезное
😇 Лучший визуальный гид по большим языковым моделям (LLM), который вы когда-либо видели

👉Новости 👉База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
1
#Собес #git
🤔 Перечислите команды для удаления ветки git

💬 Кратко:
Для удаления локальной ветки:
git branch -d ‹ branch_name>

Если ветка содержит незавершённые изменения:
git branch -D ‹ branch_name>

Для удаления удалённой ветки:
git push origin --delete ‹branch_name>


📌 Полный разбор + примеры использования — на платформе:
👉
Перейти к разбору

📣 Хочешь получать больше таких разборов?
Подпишись на наш главный канал
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
🥱 Tongyi Lab и Alibaba представили ReSum — новый способ, который позволяет веб-агентам искать дольше и отвечать точнее.

Ключевые результаты:
🔵 +4,5% к качеству по сравнению с ReAct
🔵 до +8,2% с ReSum-GRPO
🔵 Pass@1: 33,3% и 18,3% на сложных тестах BrowseComp

В чём проблема ReAct?
Агенты в ReAct ведут подробный «дневник»: думают, делают действие (поиск, клик), фиксируют результат и снова повторяют цикл.
Это делает процесс прозрачным, но в длинных задачах история быстро разрастается → лимит контекста → потеря деталей.

🚀 Решение ReSum:
🟠 Когда контекст близок к пределу, агент останавливается и пишет резюме: проверенные факты + ещё открытые вопросы.
🟠 Потом он продолжает уже с этого резюме, вместо длинной переписки.

Что добавили авторы:
🟢 Отдельную 30B-модель для резюме, которая лучше обрабатывает «шумные» страницы и выделяет важное.
🟢 Усиленное обучение ReSum-GRPO: агент получает награду только за финальный ответ, а она распределяется по всем промежуточным шагам. Это учит собирать правильные факты и делать сжатые, полезные резюме.

Итог: агенты остаются в рамках токен-бюджета и решают сложные задачи веб-поиска и анализа фактов лучше, чем классический ReAct.
Тык

👉Новости 👉База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😵 DataMind - открытая система для умных дата-агентов

DataMind - это новая архитектура для создания универсальных агентов анализа данных, которые уже превосходят GPT-5 и DeepSeek-V3.1 по качеству рассуждений и работе с кодом.

Зачем создан DataMind
Сегодня большинство дата-агентов используют закрытые модели и зависят от промпт-инжиниринга.
Открытые решения не умеют устойчиво рассуждать по шагам и работать с разными форматами данных.
Команда DataMind решила эти три главные проблемы:
1. Недостаток качественных данных для обучения
2. Неправильные стратегии обучения
3. Ошибки при многошаговом исполнении кода

🔢 Как устроен DataMind
Система включает полный цикл - от генерации данных до обучения и выполнения задач.
Она использует:
- классификацию задач и создание запросов от простых к сложным
- фильтрацию траекторий через self-consistency (самопроверку ответов)
- комбинацию динамического обучения SFT и RL, что делает процесс стабильным
- оптимизированное выполнение кода в изолированной среде

📄 Результаты
- Модель DataMind-14B показала 71.16 % среднего результата и превзошла GPT-5 и DeepSeek-V3.1
- Лёгкая версия DataMind-7B стала лучшей среди open-source решений — 68.10 %, обучена на 12 000 траекторий

💼 Главные выводы
- Фильтрация через self-consistency эффективнее, чем выбор одной «лучшей» траектории
- Потери SFT стабилизируют обучение, но при ошибочной настройке вызывают колебания
- RL сокращает разрыв между моделями, но не меняет общий рейтинг

Команда открыла датасет DataMind-12K и модели DataMind-7B и 14B, чтобы сообщество могло строить своих аналитических агентов.

🟢Исследование: https://arxiv.org/abs/2509.25084
🟢Код: https://github.com/zjunlp/DataMind
🟢Модели и данные: https://huggingface.co/collections/zjunlp/datamind-687d90047c58bb1e3d901dd8)

👉Новости 👉База вопросов
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1
#Собес #git
🤔 Что делает команда git stash?

💬 Кратко:
Команда git stash сохраняет текущие незавершённые изменения в специальное место (стек), чтобы вы могли переключиться на другую ветку или выполнить другие действия. Эти изменения можно позже восстановить с ПОМОЩЬЮ git stash apply или git stash pop .

📌 Полный разбор + примеры использования — на платформе:
👉
Перейти к разбору

📣 Хочешь получать больше таких разборов?
Подпишись на наш главный канал
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #decorator
🤔 Что такое декораторы?

💬 Кратко:

Декораторы — это функции, которые принимают другую функцию в качестве аргумента и возвращают новую функцию с изменённым поведением. Они позволяют добавлять функциональность к функциям или методам, не изменяя их код.

📌 Полный разбор + примеры использования — на платформе:
👉 Перейти к разбору

📣 Хочешь получать больше таких разборов?
Подпишись на наш главный канал
#Собес #github
🤔 Что такое Git и GitHub?

💬 Кратко:

Git — это система контроля версий, которая позволяет отслеживать изменения в коде, возвращаться к старым версиям и работать над проектом совместно с другими разработчиками. GitHub — это платформа, где можно хранить код в облаке, делиться им и управлять проектами с помощью Git. Вместе они помогают эффективно работать над проектом в команде.

📌 Полный разбор + примеры использования — на платформе:
👉 Перейти к разбору

📣 Хочешь получать больше таких разборов?
Подпишись на наш главный канал
#Собес #oop #encapsulation #inheritance
🤔 Расскажи о принципах ООП в контексте Python

💬 Кратко:

Основные принципы ООП:

- Инкапсуляция (Encapsulation): объединение данных и методов, работающих с этими данными, внутри объекта.
- Наследование (Inheritance): возможность одного класса использовать функционал другого.
- Полиморфизм (Polymorphism): способность методов работать с разными типами данных.
- Абстракция (Abstraction): скрытие деталей реализации и предоставление только необходимого интерфейса.

📌 Полный разбор + примеры использования — на платформе:
👉 Перейти к разбору

📣 Хочешь получать больше таких разборов?
Подпишись на наш главный канал
#Собес #dynamic_graph #static_graph #tensorflow
🤔 Чем PyTorch отличается от других фреймворков глубокого обучения, таких как TensorFlow?

💬 Кратко:

PyTorch и TensorFlow отличаются архитектурой вычислений: PyTorch использует динамическую вычислительную графику, что позволяет изменять граф во время выполнения, в то время как TensorFlow использует статичный граф, который требует предварительного определения. Это делает PyTorch более интуитивным и удобным для отладки, но TensorFlow может обеспечивать лучшую производительность благодаря оптимизации вычислений. Также PyTorch более дружелюбен к Python-разработчикам, поскольку поддерживает структуру управления Python, в то время как TensorFlow абстрагирует многие детали.

📌 Полный разбор + примеры использования — на платформе:
👉 Перейти к разбору

📣 Хочешь получать больше таких разборов?
Подпишись на наш главный канал