#полезное
🫡 F Lite — 10B t2i на лицензированных данных
Опенсорсная модель основанная на лицензированном датасете в 80 млн изображений. Это интересная попытка сделать абcолютно copyright-safe модель при довольно скромных ресурсах. Но есть большие сомнения, что так можно получить хоть какое-то достойное качество. Сейчас модель генерит очень плохо. На примерах тут лютый черипик.
Технически это DiT с регистрами на 10 млрд параметров, тренировали его два месяца на 64 H100. Для тюнинга гиперпараметров использовался µP. Кстати, при тренировке использовали трюк по value-residual learning из спидранов тренировки GPT. Кроме основной модели, релизнули ещё и тюн для генерации текстур.
Хоть и основная дифузионная часть была натренирована на данных к которым ни у кого претензий не будет, но VAE там все же от Flux Schnell - который тренировали потенциально на всем интернете. Если подитожить, то экперимент интересный, но результат очень слабый. Тут сказываается и малый объем данных и малая длительность тренировки для такой большой модели.
Демо
Веса
Код
Техрепорт
👉 Новости 👉 База вопросов
Опенсорсная модель основанная на лицензированном датасете в 80 млн изображений. Это интересная попытка сделать абcолютно copyright-safe модель при довольно скромных ресурсах. Но есть большие сомнения, что так можно получить хоть какое-то достойное качество. Сейчас модель генерит очень плохо. На примерах тут лютый черипик.
Технически это DiT с регистрами на 10 млрд параметров, тренировали его два месяца на 64 H100. Для тюнинга гиперпараметров использовался µP. Кстати, при тренировке использовали трюк по value-residual learning из спидранов тренировки GPT. Кроме основной модели, релизнули ещё и тюн для генерации текстур.
Хоть и основная дифузионная часть была натренирована на данных к которым ни у кого претензий не будет, но VAE там все же от Flux Schnell - который тренировали потенциально на всем интернете. Если подитожить, то экперимент интересный, но результат очень слабый. Тут сказываается и малый объем данных и малая длительность тренировки для такой большой модели.
Демо
Веса
Код
Техрепорт
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #pandas
🤔 Какие структуры данных поддерживает Pandas?
B Pandas есть две основные структуры данных:
- Series - одномерный массив с индексами, похожий на список.
- DataFrame - двумерная таблица с метками строк и столбцов, аналогичная SQL-таблице или таблице в Excel.
👉 Новости 👉 База вопросов
B Pandas есть две основные структуры данных:
- Series - одномерный массив с индексами, похожий на список.
- DataFrame - двумерная таблица с метками строк и столбцов, аналогичная SQL-таблице или таблице в Excel.
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😇 Сбер представил первую на русском языке модель с нативным восприятием аудио
Тут прикрутили аудио-модель к GigaChat 2 LLM, то есть на вход можно подавать сразу и текст и звук, который преобразуется в токены и подаётся в LLM. Это примерно как в 4o, только пока без генерации аудио, но зато теперь есть полноценное понимание звука.
Моделька распознаёт эмоции и звуки, музыку и речь на других языках. Из фишек — длина контекста в 170 минут, хватит аж на две лекции подряд (привет студентам, как там диплом?). При этом базовые метрики упали, но незначительно.
Пишут, что скоро стоит ждать полноценную speech-to-speech модель. Тогда мы получим настоящий аналог 4o. И там уже можно закрывать все колл-центры в РФ. Ведь, как показала практика, боты куда эффективнее убеждают людей. А значит, они смогут лучше продавать.
Пост на хабре
Гигачат
👉 Новости 👉 База вопросов
Тут прикрутили аудио-модель к GigaChat 2 LLM, то есть на вход можно подавать сразу и текст и звук, который преобразуется в токены и подаётся в LLM. Это примерно как в 4o, только пока без генерации аудио, но зато теперь есть полноценное понимание звука.
Моделька распознаёт эмоции и звуки, музыку и речь на других языках. Из фишек — длина контекста в 170 минут, хватит аж на две лекции подряд (привет студентам, как там диплом?). При этом базовые метрики упали, но незначительно.
Пишут, что скоро стоит ждать полноценную speech-to-speech модель. Тогда мы получим настоящий аналог 4o. И там уже можно закрывать все колл-центры в РФ. Ведь, как показала практика, боты куда эффективнее убеждают людей. А значит, они смогут лучше продавать.
Пост на хабре
Гигачат
Please open Telegram to view this post
VIEW IN TELEGRAM
#новости
😊 Gemini планирует интеграцию с GitHub.
Gemini для GitHub упростит работу с чужим кодом. Интеграция позволяет прикрепить репозиторий к запросу и получить от ИИ помощь: разобраться в структуре проекта, объяснить функции, предложить оптимизацию или найти баги.
Пока функционал ограничен: нельзя просматривать историю коммитов, пул-реквесты или вносить изменения напрямую в репозиторий. Загрузить можно только один проект (до 5000 файлов и 100 МБ), а для приватных репозиториев потребуется привязать GitHub-аккаунт к Google. Импорт доступен через веб-версию Gemini, но начатый диалог можно продолжить в мобильном приложении. Интеграция появится в настройках Gemini в ближайшее время.
9to5google.com
👉 Новости 👉 База вопросов
Gemini для GitHub упростит работу с чужим кодом. Интеграция позволяет прикрепить репозиторий к запросу и получить от ИИ помощь: разобраться в структуре проекта, объяснить функции, предложить оптимизацию или найти баги.
Пока функционал ограничен: нельзя просматривать историю коммитов, пул-реквесты или вносить изменения напрямую в репозиторий. Загрузить можно только один проект (до 5000 файлов и 100 МБ), а для приватных репозиториев потребуется привязать GitHub-аккаунт к Google. Импорт доступен через веб-версию Gemini, но начатый диалог можно продолжить в мобильном приложении. Интеграция появится в настройках Gemini в ближайшее время.
9to5google.com
Please open Telegram to view this post
VIEW IN TELEGRAM
9to5Google
Gemini is adding a GitHub app for coders
The latest Gemini app will be GitHub, with this Extension coming to the web. This is Gemini's latest third-party integration...
#новости
👍 Релиз моделей серии Phi-4 с ризонингом.
Microsoft выпустила Phi-4-reasoning, Phi-4-reasoning-plus и Phi-4-mini-reasoning с 14 миллиардов параметров у первых двух и 3.6 млрд. у mini.
Phi-4-reasoning-plus обошёл 671-миллиардную DeepSeek-R1 в тестах AIME 2025, а mini-reasoning была создана для работы на смартфонах или IoT-устройствах: она решает задачи от школьного уровня до научных расчетов, не нагружая систему.
Детали создания доступны в техническом отчете, а сами модели - на Azure или HuggingFace.
azure.microsoft.com
👉 Новости 👉 База вопросов
Microsoft выпустила Phi-4-reasoning, Phi-4-reasoning-plus и Phi-4-mini-reasoning с 14 миллиардов параметров у первых двух и 3.6 млрд. у mini.
Phi-4-reasoning-plus обошёл 671-миллиардную DeepSeek-R1 в тестах AIME 2025, а mini-reasoning была создана для работы на смартфонах или IoT-устройствах: она решает задачи от школьного уровня до научных расчетов, не нагружая систему.
Детали создания доступны в техническом отчете, а сами модели - на Azure или HuggingFace.
azure.microsoft.com
Please open Telegram to view this post
VIEW IN TELEGRAM
Search - Microsoft Bing
Sailing solo
In the lush Pantanal wetlands of Brazil, a striate
#Собес #pandas
🤔 Что такое Pandas?
Pandas - это библиотека для обработки и анализа данных в Python. Она построена на основе NumPy и предоставляет удобные структуры данных, такие как Series (одномерные массивы) и DataFrame (таблицы). С ее помощью можно загружать, обрабатывать, фильтровать и анализировать большие наборы данных. Pandas поддерживает работу с пропущенными значениями, слияние таблиц и группировку данных. Эта библиотека широко используется в науке о данных и машинном обучении.
👉 Новости 👉 База вопросов
Pandas - это библиотека для обработки и анализа данных в Python. Она построена на основе NumPy и предоставляет удобные структуры данных, такие как Series (одномерные массивы) и DataFrame (таблицы). С ее помощью можно загружать, обрабатывать, фильтровать и анализировать большие наборы данных. Pandas поддерживает работу с пропущенными значениями, слияние таблиц и группировку данных. Эта библиотека широко используется в науке о данных и машинном обучении.
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#новости
😬 Gemini 2.5 Pro прошла Pokemon Blue
Всего пару месяцев назад Claude посадили играть в покемонов, где модель успешно застряла на одном моменте. Cейчас у Gemini 2.5 Pro вышло пройти игру полностью.
Достижение заметное, но не означает превосходство одной модели над другой — модели запускали в разных средах с разным доступом к инфе. К примеру, помимо картинки, Gemini получала некоторые данные напрямую из движка игры и имела несколько подсказок по прохождению в промпте, без этого у модели играть не выходит. Да и в тренировочных данных ллм было полно инфы и советов по прохождению, с новой игрой было бы сложнее.
Вообще хотелось бы, чтобы это оформили в виде бенчмарка, но тут важно чтобы не пришли юристы Нинтендо и не засудили всех причастных. А как такое появится, там и до спидранов недалеко.
👉 Новости 👉 База вопросов
Всего пару месяцев назад Claude посадили играть в покемонов, где модель успешно застряла на одном моменте. Cейчас у Gemini 2.5 Pro вышло пройти игру полностью.
Достижение заметное, но не означает превосходство одной модели над другой — модели запускали в разных средах с разным доступом к инфе. К примеру, помимо картинки, Gemini получала некоторые данные напрямую из движка игры и имела несколько подсказок по прохождению в промпте, без этого у модели играть не выходит. Да и в тренировочных данных ллм было полно инфы и советов по прохождению, с новой игрой было бы сложнее.
Вообще хотелось бы, чтобы это оформили в виде бенчмарка, но тут важно чтобы не пришли юристы Нинтендо и не засудили всех причастных. А как такое появится, там и до спидранов недалеко.
Please open Telegram to view this post
VIEW IN TELEGRAM
#новости
🛞 Anthropic запускает программу "ИИ для науки" с бесплатным доступом к API.
Anthropic анонсировала новую инициативу "AI for Science", которая поможет ускорить научные исследования через предоставление бесплатных API-кредитов. Программа ориентирована на биологию и науки о жизни.
Участвовать могут исследователи из научных учреждений. Заявки отберут по потенциалу проекта, его влиянию и роли ИИ в ускорении работы. Приоритет получат работы по геномике или борьбе с крупными заболеваниями. Податься можно через специальную форму, а решения будет принимать команда Anthropic с привлечением экспертов.
anthropic.com
👉 Новости 👉 База вопросов
Anthropic анонсировала новую инициативу "AI for Science", которая поможет ускорить научные исследования через предоставление бесплатных API-кредитов. Программа ориентирована на биологию и науки о жизни.
Участвовать могут исследователи из научных учреждений. Заявки отберут по потенциалу проекта, его влиянию и роли ИИ в ускорении работы. Приоритет получат работы по геномике или борьбе с крупными заболеваниями. Податься можно через специальную форму, а решения будет принимать команда Anthropic с привлечением экспертов.
anthropic.com
Please open Telegram to view this post
VIEW IN TELEGRAM
Google Docs
Application Form - Anthropic's AI for Science Program
Thank you for your interest in Anthropic's AI for Science Program. This program provides API credits to researchers working on high-impact scientific projects, with a particular focus on biology and life sciences applications.
About this Program
The AI…
About this Program
The AI…
#новости
👨💻 Microsoft предложила стратегию развития социально-ориентированного ИИ.
Концепция Societal AI — это подход к разработке ИИ, который учитывает влияние технологий на общество. Основная цель: создание систем, отвечающих потребностям здравоохранения, образования и госуслуг, а также минимизация рисков вроде поляризации мнений.
Проект выделяет 3 принципа: гармония (снижение конфликтов), синергия (усиление человеческих возможностей) и устойчивость (адаптивность к изменениям). Особое внимание уделено 10 ключевым вопросам от этического выравнивания ИИ до трансформации труда и регуляторных рамок. Подробности — в полной версии документа.
microsoft.com
👉 Новости 👉 База вопросов
Концепция Societal AI — это подход к разработке ИИ, который учитывает влияние технологий на общество. Основная цель: создание систем, отвечающих потребностям здравоохранения, образования и госуслуг, а также минимизация рисков вроде поляризации мнений.
Проект выделяет 3 принципа: гармония (снижение конфликтов), синергия (усиление человеческих возможностей) и устойчивость (адаптивность к изменениям). Особое внимание уделено 10 ключевым вопросам от этического выравнивания ИИ до трансформации труда и регуляторных рамок. Подробности — в полной версии документа.
microsoft.com
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #postgres
🤔 Что означает команда enable-debug в PostgreSQL?
Команда
👉 Новости 👉 База вопросов
Команда
enable-debug в PostgreSQL для включения дополнительных параметров отладки при компиляции. Она необходима разработчикам и администраторам баз данных для диагностики проблем и улучшения производительности.Please open Telegram to view this post
VIEW IN TELEGRAM
#новости
😎 Google обновили Gemini 2.5 Pro
Новая версия Gemini 2.5 Pro Preview 05-06 гораздо лучше кодит, особенно это проявляется в фронтенде — модель заняла первое место на вебдев арене, обогнав Claude 3.7 Sonnet. Модель уже доступна в Vertex и AI Studio.
👉 Новости 👉 База вопросов
Новая версия Gemini 2.5 Pro Preview 05-06 гораздо лучше кодит, особенно это проявляется в фронтенде — модель заняла первое место на вебдев арене, обогнав Claude 3.7 Sonnet. Модель уже доступна в Vertex и AI Studio.
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😊 Mistral Medium 3
Новая модель от Mistral, опять без ризонинга, опять не сравнивают с Qwen и Gemini, весов простым смертным не дают. Но как закрытая инстракт модель вполне хорошая: почти на уровне с Sonnet 3.7, но при этом в 7 раз дешевле — $0.4/$2 против $3/$15 у соннета.
Mistral Medium 3 уже доступна в API. Через несколько недель обещают модель побольше, надеюсь уже с ризонингом.
Блогпост
👉 Новости 👉 База вопросов
Новая модель от Mistral, опять без ризонинга, опять не сравнивают с Qwen и Gemini, весов простым смертным не дают. Но как закрытая инстракт модель вполне хорошая: почти на уровне с Sonnet 3.7, но при этом в 7 раз дешевле — $0.4/$2 против $3/$15 у соннета.
Mistral Medium 3 уже доступна в API. Через несколько недель обещают модель побольше, надеюсь уже с ризонингом.
Блогпост
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
👍 Miras: как улучшить модели через память и внимание.
Google Research опубликовал интересную статью «It’s All Connected», в которой предлагают решение проблемы квадратичной сложности трансформеров в обработке последовательностей : фреймворк Miras, который объединяет онлайн-оптимизацию, управление памятью и внимание в единую систему, что в итоге позволяет создавать более эффективные модели.
Miras — это 4 компонента: архитектура памяти, целевая функция (смещение внимания), регуляризация удержания и алгоритм обучения. Miras позволяет экспериментировать с loss-функциями (Huber loss для устойчивости к выбросам) и регуляризацией (KL-дивергенция, Elastic Net).
С помощью Miras были созданы 3 тестовые модели — Moneta, Yaad и Memora. Moneta использует Lp-нормы для баланса между запоминанием и устойчивостью, Yaad комбинирует L1 и L2 через Huber loss, а Memora применяет Softmax с KL-регуляризацией.
В экспериментах тестовые модели обошли трансформеры и современные RNN на задачах языкового моделирования и поиска информации в длинных контекстах. На тесте «иголка в стоге сена» (8K токенов) Moneta достигла точности 98.8%, тогда как Mamba2 — лишь 31%.
Статья не просто теоретическое изыскание — это практическое руководство для разработки моделей. Четкая структура Miras помогает систематизировать существующие подходы и экспериментировать с компонентами. Например, замена регуляризации на Elastic Net или Bregman divergence может улучшить управление памятью в нишевых задачах.
Miras — шаг к более осмысленному проектированию архитектур. Если трансформеры — это «кувалда» для масштаба, то описанный в статье подход Google Research - хирургический инструмент, где каждый компонент настраивается под конкретную задачу.
Arxiv
👉 Новости 👉 База вопросов
Google Research опубликовал интересную статью «It’s All Connected», в которой предлагают решение проблемы квадратичной сложности трансформеров в обработке последовательностей : фреймворк Miras, который объединяет онлайн-оптимизацию, управление памятью и внимание в единую систему, что в итоге позволяет создавать более эффективные модели.
Miras — это 4 компонента: архитектура памяти, целевая функция (смещение внимания), регуляризация удержания и алгоритм обучения. Miras позволяет экспериментировать с loss-функциями (Huber loss для устойчивости к выбросам) и регуляризацией (KL-дивергенция, Elastic Net).
С помощью Miras были созданы 3 тестовые модели — Moneta, Yaad и Memora. Moneta использует Lp-нормы для баланса между запоминанием и устойчивостью, Yaad комбинирует L1 и L2 через Huber loss, а Memora применяет Softmax с KL-регуляризацией.
В экспериментах тестовые модели обошли трансформеры и современные RNN на задачах языкового моделирования и поиска информации в длинных контекстах. На тесте «иголка в стоге сена» (8K токенов) Moneta достигла точности 98.8%, тогда как Mamba2 — лишь 31%.
Статья не просто теоретическое изыскание — это практическое руководство для разработки моделей. Четкая структура Miras помогает систематизировать существующие подходы и экспериментировать с компонентами. Например, замена регуляризации на Elastic Net или Bregman divergence может улучшить управление памятью в нишевых задачах.
Miras — шаг к более осмысленному проектированию архитектур. Если трансформеры — это «кувалда» для масштаба, то описанный в статье подход Google Research - хирургический инструмент, где каждый компонент настраивается под конкретную задачу.
Arxiv
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#Собес #postgres
🤔 Какой максимальный размер таблицы в PostgreSQL?
B PostgreSQL максимальный размер таблицы ограничен размером базы данных - до 32 ТБ, если используется стандартный блок данных размером 8 КБ. Это ограничение связано с максимальной длиной идентификатора блока в системе.
👉 Новости 👉 База вопросов
B PostgreSQL максимальный размер таблицы ограничен размером базы данных - до 32 ТБ, если используется стандартный блок данных размером 8 КБ. Это ограничение связано с максимальной длиной идентификатора блока в системе.
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#полезное
❤️🔥 Апскейлим ЛЮБОЕ видео до 8K 120 FPS. В KREA зашили лютую имбу на базе Topaz.
С помощью фичи можно довести даже самый шакальный видос до голливудского качества.
Пробуем тут
👉 Новости 👉 База вопросов
С помощью фичи можно довести даже самый шакальный видос до голливудского качества.
Пробуем тут
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
😇 Почему цена за токен — это ещё не всё
Artificial Analysis недавно начали замерять цену за прогон их набора тестов, дошли они и до новых моделей Google. Вышло что Gemini 2.5 Flash с ризонингом вплоть до 150 раз дороже оригинальной Gemini 2.0 Flash. Мало того — на одних и тех же задачах она стоит почти в полтора раза дороже o4-mini-high, несмотря на то, что o4-mini дороже Gemini 2.5 Flash за токен.
Без ризонинга ситуация тоже так себе — хоть цена за токен, по сравнению с 2.0, выросла всего в 1.5x, реальная цена модели выросла в четыре раза. Дело в том что модель более разговорчивая и выдаёт, в среднем, в 2.6x больше токенов на одних и тех же задачах. Так что перед переходом всегда стоит тестить стоимость модели на реальных задачах.
👉 Новости 👉 База вопросов
Artificial Analysis недавно начали замерять цену за прогон их набора тестов, дошли они и до новых моделей Google. Вышло что Gemini 2.5 Flash с ризонингом вплоть до 150 раз дороже оригинальной Gemini 2.0 Flash. Мало того — на одних и тех же задачах она стоит почти в полтора раза дороже o4-mini-high, несмотря на то, что o4-mini дороже Gemini 2.5 Flash за токен.
Без ризонинга ситуация тоже так себе — хоть цена за токен, по сравнению с 2.0, выросла всего в 1.5x, реальная цена модели выросла в четыре раза. Дело в том что модель более разговорчивая и выдаёт, в среднем, в 2.6x больше токенов на одних и тех же задачах. Так что перед переходом всегда стоит тестить стоимость модели на реальных задачах.
Please open Telegram to view this post
VIEW IN TELEGRAM
#полезное
🛞 ML Course Notes — коллекция конспектов по машинному обучению. Этот открытый репозиторий объединяет структурированные заметки по курсам от Стэнфорда, MIT и CMU — от основ нейросетей до трансформеров и RLHF. Здесь можно найти выжимки ключевых идей из лекций Andrew Ng, Кристофера Мэннинга и Андрея Карпати.
Репозиторий будет полезен для тех, кто хочет быстро освежить материал: каждая заметка привязана к конкретному видео и лектору. На страницу проекта можно добавить свои конспекты или улучшить существующие.
Гитхаб
👉 Новости 👉 База вопросов
Репозиторий будет полезен для тех, кто хочет быстро освежить материал: каждая заметка привязана к конкретному видео и лектору. На страницу проекта можно добавить свои конспекты или улучшить существующие.
Гитхаб
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1