Forwarded from Start Career in DS
Пожалуй, самая подробная статья про градиентные бустинги (да и в целом про деревья решений и всё что с ними связано) на русском языке:
https://habr.com/ru/company/ods/blog/645887/
Тут есть ответы на очень большое количество вопросов, но статью за один присест вряд ли прочитаешь. Когда-то я начал делать цикл роликов по ключевым моментам алгоритмов (линейная регрессия часть 1 и часть 2). Тыкайте 👍 если стоит сделать такие же ролики и по деревьям/бустингам 🙂
https://habr.com/ru/company/ods/blog/645887/
Тут есть ответы на очень большое количество вопросов, но статью за один присест вряд ли прочитаешь. Когда-то я начал делать цикл роликов по ключевым моментам алгоритмов (линейная регрессия часть 1 и часть 2). Тыкайте 👍 если стоит сделать такие же ролики и по деревьям/бустингам 🙂
Хабр
CatBoost, XGBoost и выразительная способность решающих деревьев
Сейчас существенная часть машинного обучения основана на решающих деревьях и их ансамблях, таких как CatBoost и XGBoost, но при этом не все имеют представление о том, как устроены эти алгоритмы...
#quantitative #learn #quant
Какая математика требуется для квантов?
Тервер, матстат, непараметрический матстат, слупы, эконометрика, теория мартингалов, теория больших уклонений, стохастические дифференциальные уравнения, байесовские методы так же не лишними будут, а так же много и много другого в удивительном мире математики
Какая математика требуется для квантов?
Тервер, матстат, непараметрический матстат, слупы, эконометрика, теория мартингалов, теория больших уклонений, стохастические дифференциальные уравнения, байесовские методы так же не лишними будут, а так же много и много другого в удивительном мире математики
#cv #resume #ds #career
Темплейт для резюме
https://ru.overleaf.com/latex/templates/data-science-tech-resume-template/zcdmpfxrzjhv
Темплейт для резюме
https://ru.overleaf.com/latex/templates/data-science-tech-resume-template/zcdmpfxrzjhv
Overleaf
data-science-tech-resume-template
Простой в использовании онлайн редактор LaTeX. Не требует установки, поддерживает совместную работу в реальном времени, контроль версий, сотни шаблонов LaTeX и многое другое.
Forwarded from ML for Value / Ваня Максимов
В канале уже почти месяц не было постов: это потому что я готовил нечто интересное для вас всех) Но обо всем по порядку: на этой неделе небольшие вводные истории, а все лакомое буду писать уже с понедельника
Итак, примерно полгода назад я выступал и рассказывал о способах ускорить А/В тесты. Даже тогда я много времени уделял процессам или "культуре экспериментов"
Можно бесконечно применять CUPED, CUPAC и другие методы, но что делать если:
- Менеджер говорит: "Фича супер важна, нужно выкатить ее еще вчера"?
- Ключевая метрика не красится и предлагается посчитать еще десяток других, которых не было в изначальном дизайне?
- Хотим запустить сразу 20 маркетинговых баннеров в тест?
- Аналитик дизайнит тест аж целый спринт?
Имхо, успешность фичей определяется ответами именно на эти вопросы в вашей "культуре экспериментов". Верхнеуровнево все довольно просто:
1. Появилась идея + ее побрейнштормили внутри команды = конкретное описание фичи
2. Посчитан ожидаемый импакт от фичи в конкретных 1-3 метриках
3. Оцениваем адекватность фичи на пользователях через UX
4. Делаем фичу и проверяем, что она технически работает
5. Смотрим на нескольких боевых пользователях и тестируем edge кейсы
6. Дизайним А/В = приемочные, барьерные и контрольные метрики, сроки и % пользователей
7. Запускаем тест
8. Принимаем решение в соответствии с дизайном
Звучит легко, но в реальности gap между аналитиком, продактом и разработчиком сильно усложняет процесс)
Забыли прокинуть событие в аналитику, не учли важную метрику соседней команды, покатили фичу в пятницу вечером - Узнаете ли свой опыт?)
Серия постов на этой неделе будет посвящена "культуре экспериментов" или "как избежать таких сложностей"
Итак, примерно полгода назад я выступал и рассказывал о способах ускорить А/В тесты. Даже тогда я много времени уделял процессам или "культуре экспериментов"
Можно бесконечно применять CUPED, CUPAC и другие методы, но что делать если:
- Менеджер говорит: "Фича супер важна, нужно выкатить ее еще вчера"?
- Ключевая метрика не красится и предлагается посчитать еще десяток других, которых не было в изначальном дизайне?
- Хотим запустить сразу 20 маркетинговых баннеров в тест?
- Аналитик дизайнит тест аж целый спринт?
Имхо, успешность фичей определяется ответами именно на эти вопросы в вашей "культуре экспериментов". Верхнеуровнево все довольно просто:
1. Появилась идея + ее побрейнштормили внутри команды = конкретное описание фичи
2. Посчитан ожидаемый импакт от фичи в конкретных 1-3 метриках
3. Оцениваем адекватность фичи на пользователях через UX
4. Делаем фичу и проверяем, что она технически работает
5. Смотрим на нескольких боевых пользователях и тестируем edge кейсы
6. Дизайним А/В = приемочные, барьерные и контрольные метрики, сроки и % пользователей
7. Запускаем тест
8. Принимаем решение в соответствии с дизайном
Звучит легко, но в реальности gap между аналитиком, продактом и разработчиком сильно усложняет процесс)
Забыли прокинуть событие в аналитику, не учли важную метрику соседней команды, покатили фичу в пятницу вечером - Узнаете ли свой опыт?)
Серия постов на этой неделе будет посвящена "культуре экспериментов" или "как избежать таких сложностей"
YouTube
Иван Максимов | 13 способов ускорить А/В тест, или "Не CUPED-ом единым"
ML in Marketing hub: https://ods.ai/hubs/ml-in-marketing
Телеграм-канал https://news.1rj.ru/str/mlinmarketing
Спикер: Иван Максимов, Data Science Team Lead at Delivery Club
Многие аналитики для ускорения А/В тестов в первую очередь используют достаточно сложные статистические…
Телеграм-канал https://news.1rj.ru/str/mlinmarketing
Спикер: Иван Максимов, Data Science Team Lead at Delivery Club
Многие аналитики для ускорения А/В тестов в первую очередь используют достаточно сложные статистические…