Forwarded from DevFM
Преодолеваем постоянное откладывание дел
Для разгрузки оперативной памяти я все будущие задачи вношу в таск-менеджер. Независимо от объёма задачи всё должно быть записано, чтобы не держать в голове. Но дальше возникает большая проблема — некоторые задачи после внесения в таск-менеджер я не делаю никогда, постоянно отодвигая на "когда-нибудь потом". Это приводит к большим неудобствам. Например, вторая часть стрима python student уже три месяца откладывается. Проблема в том, что назначение подобной задачи "на сегодня" плохо помогает, так как задача большая и сложная, подступиться к ней сложно.
Мой опыт преодоления такой:
✅ Декомпозирую задачу. Продумывание задачи и выделение небольших шагов по её выполнению переводит задачу из разряда "ух, страшное и большое" в "хм, вот этот шаг займёт полчаса и даже понятно, как его сделать".
Давайте на примере. Задача "снять ролик python students, часть 2". Декомпозируем:
— решить, какие темы включить в ролик
— прописать сценарий
— прописать текст
— снять ролик
— смонтировать ролик
— расставить текстовые подсказки по ролику
— подкорректировать аудиодорожку
— выложить ролик
Прелесть такого плана в том, что каждая задача мотивирует сделать следующую. Если я нашёл темы для ролика, то уже хочется написать сценарий. Когда готов сценарий, то прописать текст уже несложно.
Если после декомпозиции я не приступаю к задаче, то тут два варианта: либо задача по факту мне не нужна и её нужно выкинуть, либо я плохо декомпозировал, и тогда надо раздробить её на более мелкие подзадачи.
Для меня главный фактор откладывания задачи — её неясность. Дробление задачи позволяет неясность устранить. Задачи должны быть такого размера, чтобы минимизировать напряжение мозга: взял и сделал.
Еще один житейский пример: в машине загорелась лампочка "долить охлаждающую жидкость".
Уже на опыте я не заношу задачу: "Съездить в сервис и долить жидкость". Куда ехать? Когда ехать? — вот такие вопросы у меня будут возникать и я точно буду её откладывать.
Я ставлю задачи:
— Выбрать сервис для замены жидкости (смотрю отзывы на картах)
— Позвонить и договориться о времени (узнать цену, сколько займёт по времени, после разговора записать адрес)
— Поехать в сервис на замену жидкости <— по факту это та же задача, но только теперь у меня нет к ней вопросов, просто беру и делаю.
Обратите внимание на подсказки в скобках, они позволяют в момент решения задачи дополнительно не думать: А как выбрать сервис? А что нужно дополнительно уточнить, когда буду звонить?
Полезны ещё несколько аспектов:
✅ При составлении плана учитываю будущую загрузку, не планирую 40 задач по часу каждая на воскресенье. Приходит с опытом. Или не приходит.
✅ Учитываю приоритет задачи. Если задача важная / выгодная / полезная, то планирую её пораньше.
✅ Умеряю перфекционизм. Часто надо сделать хорошо, а не идеально. Опускаться до уровня "кое-как" не всегда оправданно, но иногда и это годится.
✅ Для меня ещё работает практика начать чуть-чуть. Если к чему-то не могу приступить, просто ставлю себе установку — начну и 15 минут поделаю. Обычно после такого начала продолжаю делать задачу. А если нет, то не расстраиваюсь, значит задача не такая нужная.
В дополнение вспомним про хорошую и плохую прокрастинацию от Пола Грэма. Это когда ты занят, но не тем.
А еще я каждый день анализирую список своих задач, но это тема отдельного поста.
#devfm #edu
Для разгрузки оперативной памяти я все будущие задачи вношу в таск-менеджер. Независимо от объёма задачи всё должно быть записано, чтобы не держать в голове. Но дальше возникает большая проблема — некоторые задачи после внесения в таск-менеджер я не делаю никогда, постоянно отодвигая на "когда-нибудь потом". Это приводит к большим неудобствам. Например, вторая часть стрима python student уже три месяца откладывается. Проблема в том, что назначение подобной задачи "на сегодня" плохо помогает, так как задача большая и сложная, подступиться к ней сложно.
Мой опыт преодоления такой:
✅ Декомпозирую задачу. Продумывание задачи и выделение небольших шагов по её выполнению переводит задачу из разряда "ух, страшное и большое" в "хм, вот этот шаг займёт полчаса и даже понятно, как его сделать".
Давайте на примере. Задача "снять ролик python students, часть 2". Декомпозируем:
— решить, какие темы включить в ролик
— прописать сценарий
— прописать текст
— снять ролик
— смонтировать ролик
— расставить текстовые подсказки по ролику
— подкорректировать аудиодорожку
— выложить ролик
Прелесть такого плана в том, что каждая задача мотивирует сделать следующую. Если я нашёл темы для ролика, то уже хочется написать сценарий. Когда готов сценарий, то прописать текст уже несложно.
Если после декомпозиции я не приступаю к задаче, то тут два варианта: либо задача по факту мне не нужна и её нужно выкинуть, либо я плохо декомпозировал, и тогда надо раздробить её на более мелкие подзадачи.
Для меня главный фактор откладывания задачи — её неясность. Дробление задачи позволяет неясность устранить. Задачи должны быть такого размера, чтобы минимизировать напряжение мозга: взял и сделал.
Еще один житейский пример: в машине загорелась лампочка "долить охлаждающую жидкость".
Уже на опыте я не заношу задачу: "Съездить в сервис и долить жидкость". Куда ехать? Когда ехать? — вот такие вопросы у меня будут возникать и я точно буду её откладывать.
Я ставлю задачи:
— Выбрать сервис для замены жидкости (смотрю отзывы на картах)
— Позвонить и договориться о времени (узнать цену, сколько займёт по времени, после разговора записать адрес)
— Поехать в сервис на замену жидкости <— по факту это та же задача, но только теперь у меня нет к ней вопросов, просто беру и делаю.
Обратите внимание на подсказки в скобках, они позволяют в момент решения задачи дополнительно не думать: А как выбрать сервис? А что нужно дополнительно уточнить, когда буду звонить?
Полезны ещё несколько аспектов:
✅ При составлении плана учитываю будущую загрузку, не планирую 40 задач по часу каждая на воскресенье. Приходит с опытом. Или не приходит.
✅ Учитываю приоритет задачи. Если задача важная / выгодная / полезная, то планирую её пораньше.
✅ Умеряю перфекционизм. Часто надо сделать хорошо, а не идеально. Опускаться до уровня "кое-как" не всегда оправданно, но иногда и это годится.
✅ Для меня ещё работает практика начать чуть-чуть. Если к чему-то не могу приступить, просто ставлю себе установку — начну и 15 минут поделаю. Обычно после такого начала продолжаю делать задачу. А если нет, то не расстраиваюсь, значит задача не такая нужная.
В дополнение вспомним про хорошую и плохую прокрастинацию от Пола Грэма. Это когда ты занят, но не тем.
А еще я каждый день анализирую список своих задач, но это тема отдельного поста.
#devfm #edu
Telegram
DevFM
Мы сняли часовой стрим по созданию небольшого проекта на python для начинающих разработчиков. Идея проста — прочитать в csv-файле ФИО и login и проверить существование этого login на gitlab. Но тут vim, проект на gitlab, консольный git, исключения, google…
Forwarded from Вячеслав Колосков
YouTube
NoML Семинар. Дрейф Данных
Вопросы и комментарии - в чате сообщества:
https://news.1rj.ru/str/noml_community
Выступили коллеги из команды GlowByte Advanced Analytics:
😎 Анна Муравьева
😎 Александр Косов
В докладе рассмотрены следующие вопросы:
📌 Что такое дрейф данных и почему важно его отслеживать?…
https://news.1rj.ru/str/noml_community
Выступили коллеги из команды GlowByte Advanced Analytics:
😎 Анна Муравьева
😎 Александр Косов
В докладе рассмотрены следующие вопросы:
📌 Что такое дрейф данных и почему важно его отслеживать?…
Forwarded from Дмитрий Колодезев
крон внутри докера - грех перед Господом системдизайна
Forwarded from Dmitrii
Вдруг, не видели. Бинанс отдает всю свою историю на data.binance.vision.
Forwarded from Базы данных & SQL
Хабр
Лучшие вопросы средней сложности по SQL на собеседовании аналитика данных
Первые 70% курса по SQL кажутся довольно простыми. Сложности начинаются на остальных 30%. С 2015 по 2019 годы я прошёл четыре цикла собеседований на должность аналитика данных и специалиста по...
Forwarded from BOGDAN
Forwarded from MarksRemarks (Mark Baushenko)
Entity_Linking_System.pdf
2.1 MB
Forwarded from Alexander C
https://www.kaggle.com/code/vbmokin/data-science-for-tabular-data-advanced-techniques
Quite an interesting notebook - collection of various ideas from many Kaggle competitions (tabular data).
Quite an interesting notebook - collection of various ideas from many Kaggle competitions (tabular data).