A Deep Variational Approach to Clustering Survival Data
Github: https://github.com/i6092467/vadesc
Paper: https://arxiv.org/abs/2106.05763v1
@ArtificialIntelligencedl
Github: https://github.com/i6092467/vadesc
Paper: https://arxiv.org/abs/2106.05763v1
@ArtificialIntelligencedl
Part-aware Panoptic Segmentation
Github: https://github.com/pmeletis/panoptic_parts
Paper: https://arxiv.org/abs/2106.06351v1
Docs: https://panoptic-parts.readthedocs.io/en/stable
@ArtificialIntelligencedl
Github: https://github.com/pmeletis/panoptic_parts
Paper: https://arxiv.org/abs/2106.06351v1
Docs: https://panoptic-parts.readthedocs.io/en/stable
@ArtificialIntelligencedl
Optimal transport in multilayer networks
Github: https://github.com/cdebacco/MultiOT
Paper: https://arxiv.org/abs/2106.07202v1
@ArtificialIntelligencedl
Github: https://github.com/cdebacco/MultiOT
Paper: https://arxiv.org/abs/2106.07202v1
@ArtificialIntelligencedl
☑️ Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
Github: https://github.com/cf020031308/LinkDist
Paper: https://arxiv.org/abs/2106.08541v1
@ArtificialIntelligencedl
Github: https://github.com/cf020031308/LinkDist
Paper: https://arxiv.org/abs/2106.08541v1
@ArtificialIntelligencedl
Deep Transfer Learning on PyTorch
Github: https://github.com/easezyc/deep-transfer-learning
Paper: https://arxiv.org/abs/2106.09388v1
@ArtificialIntelligencedl
Github: https://github.com/easezyc/deep-transfer-learning
Paper: https://arxiv.org/abs/2106.09388v1
@ArtificialIntelligencedl
GitHub
GitHub - easezyc/deep-transfer-learning: A collection of implementations of deep domain adaptation algorithms
A collection of implementations of deep domain adaptation algorithms - GitHub - easezyc/deep-transfer-learning: A collection of implementations of deep domain adaptation algorithms
XCiT: Cross-Covariance Image Transformers
Github: https://github.com/facebookresearch/xcit
Paper: https://arxiv.org/abs/2106.09681v1
@ArtificialIntelligencedl
Github: https://github.com/facebookresearch/xcit
Paper: https://arxiv.org/abs/2106.09681v1
@ArtificialIntelligencedl
LMs for biomedical KG completion
Github: https://github.com/rahuln/lm-bio-kgc
Paper: https://arxiv.org/abs/2106.09700
@ArtificialIntelligencedl
Github: https://github.com/rahuln/lm-bio-kgc
Paper: https://arxiv.org/abs/2106.09700
@ArtificialIntelligencedl
This media is not supported in your browser
VIEW IN TELEGRAM
♠️ RLCard: A Toolkit for Reinforcement Learning in Card Games
Github: https://github.com/datamllab/rlcard
DouZero: https://github.com/kwai/DouZero
Paper: https://arxiv.org/abs/2106.06135v1
@ArtificialIntelligencedl
Github: https://github.com/datamllab/rlcard
DouZero: https://github.com/kwai/DouZero
Paper: https://arxiv.org/abs/2106.06135v1
@ArtificialIntelligencedl
Adversarial poison generation and evaluation
Github: https://github.com/lhfowl/adversarial_poisons
Paper: https://arxiv.org/abs/2106.10807
@ArtificialIntelligencedl
Github: https://github.com/lhfowl/adversarial_poisons
Paper: https://arxiv.org/abs/2106.10807
@ArtificialIntelligencedl
🧠 Tiny CUDA Neural Networks
Github: https://github.com/nvlabs/tiny-cuda-nn
Paper: https://arxiv.org/abs/2106.12372v1
@ArtificialIntelligencedl
Github: https://github.com/nvlabs/tiny-cuda-nn
Paper: https://arxiv.org/abs/2106.12372v1
@ArtificialIntelligencedl
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation
Github: https://github.com/happy-jihye/Cartoon-StyleGan2
Paper: https://arxiv.org/abs/2106.12445
Colab: https://colab.research.google.com/github/happy-jihye/Cartoon-StyleGan2/blob/main/Cartoon_StyleGAN2.ipynb
@ai_machinelearning_big_data
Github: https://github.com/happy-jihye/Cartoon-StyleGan2
Paper: https://arxiv.org/abs/2106.12445
Colab: https://colab.research.google.com/github/happy-jihye/Cartoon-StyleGan2/blob/main/Cartoon_StyleGAN2.ipynb
@ai_machinelearning_big_data
VOLO: Vision Outlooker for Visual Recognition
Github: https://github.com/sail-sg/volo
Paper: https://arxiv.org/abs/2106.13112
@ai_machinelearning_big_data
Github: https://github.com/sail-sg/volo
Paper: https://arxiv.org/abs/2106.13112
@ai_machinelearning_big_data
Neural Network Pruning
Github: https://github.com/lucaslie/torchprune
Paper: https://arxiv.org/abs/2106.12718v1
@ArtificialIntelligencedl
Github: https://github.com/lucaslie/torchprune
Paper: https://arxiv.org/abs/2106.12718v1
@ArtificialIntelligencedl
CAMS: Color-Aware Multi-Style Transfer
Github: https://github.com/mahmoudnafifi/color-aware-style-transfer
Paper: https://arxiv.org/abs/2106.13920v1
@ArtificialIntelligencedl
Github: https://github.com/mahmoudnafifi/color-aware-style-transfer
Paper: https://arxiv.org/abs/2106.13920v1
@ArtificialIntelligencedl
AI Workshop: Bring Your Use Case Ideas to Life
In this workshop, we present how you can use AI services and start prototyping in minutes.
We cover some of the most popular AI verticals such as Computer Vision and Natural Language Processing.
After this workshop, you will know:
1. What is AI as a Service, and how does it work?
2. What are Computer Vision, NLP, and Speech?
3. How can you prototype your AI products before actual implementation?
Requirements:
✅ Free Registration
✅ Basic Python knowledge
https://www.linkedin.com/events/6814928657631473664/
In this workshop, we present how you can use AI services and start prototyping in minutes.
We cover some of the most popular AI verticals such as Computer Vision and Natural Language Processing.
After this workshop, you will know:
1. What is AI as a Service, and how does it work?
2. What are Computer Vision, NLP, and Speech?
3. How can you prototype your AI products before actual implementation?
Requirements:
✅ Free Registration
✅ Basic Python knowledge
https://www.linkedin.com/events/6814928657631473664/
Linkedin
AI Workshop: Bring Your Use Case Ideas to Life | LinkedIn
These days many businesses want to solve their problems with AI. However, you‘ll need a realistic plan together with a proof of concept for your AI use case idea to be ultimately successful.
In this workshop, we present how you can use AI services and start…
In this workshop, we present how you can use AI services and start…
Deep Equilibrium Models
Github: https://github.com/locuslab/deq
Paper: https://arxiv.org/abs/2106.14342v1
@ArtificialIntelligencedl
Github: https://github.com/locuslab/deq
Paper: https://arxiv.org/abs/2106.14342v1
@ArtificialIntelligencedl
Multilayer Networks for Text Analysis with Multiple Data Types
Github: https://github.com/martingerlach/hSBM_Topicmodel
Paper: https://arxiv.org/pdf/2106.15821v1.pdf
@ArtificialIntelligencedl
Github: https://github.com/martingerlach/hSBM_Topicmodel
Paper: https://arxiv.org/pdf/2106.15821v1.pdf
@ArtificialIntelligencedl
PlanSys2: A Planning System Framework for ROS2
Github: https://github.com/IntelligentRoboticsLabs/ros2_planning_system
Paper: https://arxiv.org/abs/2107.00376v1
@ArtificialIntelligencedl
Github: https://github.com/IntelligentRoboticsLabs/ros2_planning_system
Paper: https://arxiv.org/abs/2107.00376v1
@ArtificialIntelligencedl
Deep Transfer Learning Baselines for Sentiment Analysis in Russian
Github: https://github.com/sismetanin/sentiment-analysis-in-russian
Paper: https://www.sciencedirect.com/science/article/abs/pii/S0306457320309730?dgcid=author
@ArtificialIntelligencedl
Github: https://github.com/sismetanin/sentiment-analysis-in-russian
Paper: https://www.sciencedirect.com/science/article/abs/pii/S0306457320309730?dgcid=author
@ArtificialIntelligencedl
GitHub
GitHub - sismetanin/sentiment-analysis-in-russian: Fine-tuned Multilingual BERT and Multilingual USE for sentiment analysis in…
Fine-tuned Multilingual BERT and Multilingual USE for sentiment analysis in Russian. RuReviews, RuSentiment, Kaggle Russian News Dataset, LINIS Crowd, and RuTweetCorp were utilized as training data...
Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets
Github: https://github.com/HayeonLee/MetaD2A
Paper: https://arxiv.org/abs/2107.00860v1
@ArtificialIntelligencedl
Github: https://github.com/HayeonLee/MetaD2A
Paper: https://arxiv.org/abs/2107.00860v1
@ArtificialIntelligencedl
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020)
Github: https://github.com/QingyongHu/RandLA-Net
Paper: https://arxiv.org/abs/1911.11236
Project: http://randla-net.cs.ox.ac.uk/
@ArtificialIntelligencedl
Github: https://github.com/QingyongHu/RandLA-Net
Paper: https://arxiv.org/abs/1911.11236
Project: http://randla-net.cs.ox.ac.uk/
@ArtificialIntelligencedl