Localizing Objects with Self-Supervised Transformers and no Labels
Github: https://github.com/valeoai/LOST
Paper: https://arxiv.org/abs/2109.14279v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Github: https://github.com/valeoai/LOST
Paper: https://arxiv.org/abs/2109.14279v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
PyTorch Image Models
Github: https://github.com/rwightman/pytorch-image-models
Paper: https://arxiv.org/abs/2110.00476v1
Dataset: https://paperswithcode.com/dataset/cifar-10
@ArtificialIntelligencedl
Github: https://github.com/rwightman/pytorch-image-models
Paper: https://arxiv.org/abs/2110.00476v1
Dataset: https://paperswithcode.com/dataset/cifar-10
@ArtificialIntelligencedl
GitHub
GitHub - huggingface/pytorch-image-models: The largest collection of PyTorch image encoders / backbones. Including train, eval…
The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export noscripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (V...
PyTorch Image Models
Github: https://github.com/zhigroup/pytorch_ehr
Paper: https://arxiv.org/abs/2110.00998v1
@ArtificialIntelligencedl
Github: https://github.com/zhigroup/pytorch_ehr
Paper: https://arxiv.org/abs/2110.00998v1
@ArtificialIntelligencedl
FilterAugment: An Acoustic Environmental Data Augmentation Method
Github: https://github.com/frednam93/FilterAugSED
Paper: https://arxiv.org/abs/2110.03282v1
Dataset: https://paperswithcode.com/dataset/voxceleb1
@ArtificialIntelligencedl
Github: https://github.com/frednam93/FilterAugSED
Paper: https://arxiv.org/abs/2110.03282v1
Dataset: https://paperswithcode.com/dataset/voxceleb1
@ArtificialIntelligencedl
Gradient Step Denoiser for convergent Plug-and-Play
Github: https://github.com/samuro95/gspnp
Paper: https://arxiv.org/pdf/2110.03220.pdf
Dataset: https://paperswithcode.com/dataset/cbsd68
@ArtificialIntelligencedl
Github: https://github.com/samuro95/gspnp
Paper: https://arxiv.org/pdf/2110.03220.pdf
Dataset: https://paperswithcode.com/dataset/cbsd68
@ArtificialIntelligencedl
NVIDIA Deep Learning Examples for Tensor Cores
Github: https://github.com/NVIDIA/DeepLearningExamples
Paper: https://arxiv.org/abs/2110.03352v1
Tasks: https://paperswithcode.com/task/brain-tumor-segmentation
@ArtificialIntelligencedl
Github: https://github.com/NVIDIA/DeepLearningExamples
Paper: https://arxiv.org/abs/2110.03352v1
Tasks: https://paperswithcode.com/task/brain-tumor-segmentation
@ArtificialIntelligencedl
RGB-stacking 🛑🟩🔷 for robotic manipulation
Github: https://github.com/deepmind/rgb_stacking
Paper: https://arxiv.org/abs/2110.06192v1
Blog: https://deepmind.com/blog/article/stacking-our-way-to-more-general-robots
@ArtificialIntelligencedl
Github: https://github.com/deepmind/rgb_stacking
Paper: https://arxiv.org/abs/2110.06192v1
Blog: https://deepmind.com/blog/article/stacking-our-way-to-more-general-robots
@ArtificialIntelligencedl
Building Multimodal Models: Using the widedeep Pytorch package
https://www.kdnuggets.com/2021/10/building-multimodal-models-widedeep-pytorch-package.html
@ArtificialIntelligencedl
https://www.kdnuggets.com/2021/10/building-multimodal-models-widedeep-pytorch-package.html
@ArtificialIntelligencedl
Graph Condensation for Graph Neural Networks
Github: https://github.com/cambridgeltl/composable-sft
Paper: https://arxiv.org/abs/2110.07560v1
Dataset: https://paperswithcode.com/dataset/glue
@ArtificialIntelligencedl
Github: https://github.com/cambridgeltl/composable-sft
Paper: https://arxiv.org/abs/2110.07560v1
Dataset: https://paperswithcode.com/dataset/glue
@ArtificialIntelligencedl
Adversarial Attacks on ML Defense Models Competition
Github: https://github.com/thu-ml/ares
Paper: https://arxiv.org/abs/2110.08042v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Github: https://github.com/thu-ml/ares
Paper: https://arxiv.org/abs/2110.08042v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
This media is not supported in your browser
VIEW IN TELEGRAM
Discovering and Achieving Goals via World Models
Github: https://github.com/orybkin/lexa
Paper: https://arxiv.org/abs/2110.09514v1
Dataset: https://paperswithcode.com/dataset/deepmind-control-suite
@ArtificialIntelligencedl
Github: https://github.com/orybkin/lexa
Paper: https://arxiv.org/abs/2110.09514v1
Dataset: https://paperswithcode.com/dataset/deepmind-control-suite
@ArtificialIntelligencedl
RoQNN: Noise-Aware Training for Robust Quantum Neural Networks
Github: https://github.com/mit-han-lab/pytorch-quantum
Paper: https://arxiv.org/abs/2110.11331v1
Dataset: https://paperswithcode.com/dataset/mnist
@ArtificialIntelligencedl
Github: https://github.com/mit-han-lab/pytorch-quantum
Paper: https://arxiv.org/abs/2110.11331v1
Dataset: https://paperswithcode.com/dataset/mnist
@ArtificialIntelligencedl
Generalized Out-of-Distribution Detection: A Survey
Github: https://github.com/jingkang50/oodsurvey
Paper: https://arxiv.org/abs/2110.11334v1
@ArtificialIntelligencedl
Github: https://github.com/jingkang50/oodsurvey
Paper: https://arxiv.org/abs/2110.11334v1
@ArtificialIntelligencedl
Multi-label Classification with Partial Annotations using Class-aware Selective Loss
Github: https://github.com/alibaba-miil/partiallabelingcsl
Paper: https://arxiv.org/abs/2110.10955v1
Dataset: https://arxiv.org/abs/2110.10955v1
@ArtificialIntelligencedl
Github: https://github.com/alibaba-miil/partiallabelingcsl
Paper: https://arxiv.org/abs/2110.10955v1
Dataset: https://arxiv.org/abs/2110.10955v1
@ArtificialIntelligencedl
Subject Adaptive EEG-based Visual Recognition
Github: https://github.com/DeepBCI/Deep-BCI
Paper: https://arxiv.org/abs/2110.13470v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Github: https://github.com/DeepBCI/Deep-BCI
Paper: https://arxiv.org/abs/2110.13470v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Subject Adaptive EEG-based Visual Recognition
Github: https://github.com/junsu-kim97/higl
Paper: https://arxiv.org/abs/2110.13625v2
Dataset: https://paperswithcode.com/dataset/mujoco
@ArtificialIntelligencedl
Github: https://github.com/junsu-kim97/higl
Paper: https://arxiv.org/abs/2110.13625v2
Dataset: https://paperswithcode.com/dataset/mujoco
@ArtificialIntelligencedl
Subject Adaptive EEG-based Visual Recognition
Github: https://github.com/rll-research/url_benchmark
Paper: https://arxiv.org/abs/2110.15191v1
Dataset: https://paperswithcode.com/dataset/openai-gym
@ArtificialIntelligencedl
Github: https://github.com/rll-research/url_benchmark
Paper: https://arxiv.org/abs/2110.15191v1
Dataset: https://paperswithcode.com/dataset/openai-gym
@ArtificialIntelligencedl
🔊 Torchaudio: an audio library for PyTorch
Github: https://github.com/pytorch/audio
Paper: https://arxiv.org/abs/2110.15018v1
Dataset: https://paperswithcode.com/dataset/ljspeech
@ArtificialIntelligencedl
Github: https://github.com/pytorch/audio
Paper: https://arxiv.org/abs/2110.15018v1
Dataset: https://paperswithcode.com/dataset/ljspeech
@ArtificialIntelligencedl
⛓ Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training
Github: https://github.com/hpcaitech/colossalai
Paper: https://arxiv.org/abs/2110.14883v1
@ArtificialIntelligencedl
Github: https://github.com/hpcaitech/colossalai
Paper: https://arxiv.org/abs/2110.14883v1
@ArtificialIntelligencedl
Exploring the Semi-supervised Video Object Segmentation Problem from a Cyclic Perspective
Github: https://github.com/lyxok1/STM-Training
Paper: https://arxiv.org/abs/2111.01323v1
Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
Github: https://github.com/lyxok1/STM-Training
Paper: https://arxiv.org/abs/2111.01323v1
Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
🥇 Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation
Github: https://github.com/google-research/federated
Paper: https://arxiv.org/abs/2111.02356v1
@ArtificialIntelligencedl
Github: https://github.com/google-research/federated
Paper: https://arxiv.org/abs/2111.02356v1
@ArtificialIntelligencedl