Artificial Intelligence – Telegram
Artificial Intelligence
16.5K subscribers
1.11K photos
9 videos
1 file
1.97K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - 🔥 best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python книги📚

@datascienceiot - ml 📚

РКН: clck.ru/3FmwZw
Download Telegram
Tutel: Adaptive Mixture-of-Experts at Scale

Tutel, a highly scalable stack design and implementation for MoE with dynamically adaptive parallelism and pipelining.

Github: https://github.com/microsoft/tutel

Examples: https://github.com/microsoft/tutel/blob/main/tutel/examples

Paper: https://paperswithcode.com/dataset/coco

Documentation: https://ontomerger.readthedocs.io/

@ArtificialIntelligencedl
👍6
📌 Sparse Fusion Mixture-of-Experts are Domain Generalizable Learners

Sparse Fusion Mixture-of-Experts (SF-MoE), which incorporates sparsity and fusion mechanisms into the MoE framework to keep the model both sparse and predictive.

Github: https://github.com/luodian/sf-moe-dg

Paper: https://arxiv.org/abs/2206.04046v1

Documentation: https://paperswithcode.com/dataset/domainnet

@ArtificialIntelligencedl
👍4
🔹 PointNeXt & OpenPoints Library

improved training and model scaling strategies to boost PointNet++ to the state-of-the-art level.

Github: https://github.com/guochengqian/pointnext

Paper: https://paperswithcode.com/dataset/shapenet

@ArtificialIntelligencedl
👍5
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

Github: https://github.com/google/BIG-bench

Paper: https://arxiv.org/abs/2206.04615v1

Dataset: https://paperswithcode.com/dataset/glue

@ArtificialIntelligencedl
8
🔊 SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning

We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio rendering for 3D environments.

Github: https://github.com/facebookresearch/sound-spaces

Paper: https://arxiv.org/abs/2206.08312v1

Dataset: https://paperswithcode.com/dataset/librispeech
🔦 Featurized Query R-CNN

Featurized object queries predicted by a query generation network in the well-established Faster R-CNN framework and develop a Featurized Query R-CN

Github: https://github.com/hustvl/featurized-queryrcnn

Paper: https://arxiv.org/abs/2206.06258v1

Dataset: https://paperswithcode.com/dataset/crowdhuman

@ArtificialIntelligencedl
👍4
UniSRec

The proposed approach utilizes the associated denoscription text of items to learn transferable representations across different recommendation scenarios.

Github: https://github.com/rucaibox/unisrec

Paper: https://arxiv.org/abs/2206.05941v1

Google Drive: https://drive.google.com/drive/folders/1Uik0fMk4oquV_bS9lXTZuExAYbIDkEMW?usp=sharing

@ArtificialIntelligencedl
🔥3
🌑 LET-3D-AP: Longitudinal Error Tolerant 3D Average Precision for Camera-Only 3D Detection

Waymo Open Dataset publicly to aid the research community in making advancements in machine perception and autonomous driving technology.

Github: https://github.com/waymo-research/waymo-open-dataset

Paper: https://arxiv.org/abs/2206.07705v1

Dataset: https://paperswithcode.com/dataset/waymo-open-datasetg

@ArtificialIntelligencedl
👍2
Forwarded from Machinelearning
🖊 StrengthNet

Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

Github: https://github.com/ttslr/strengthnet

Paper: https://arxiv.org/abs/2110.03156

MOSNet: https://github.com/lochenchou/MOSNet

@ai_machinelearning_big_data
👍5
🏙 Spatially-Adapive Multilayer (SAM) Inversion

Proposed method automatically selects the latent space tailored for each region to balance the reconstruction quality and editability (3rd row).

Github: https://github.com/adobe-research/sam_inversion

Project: https://www.cs.cmu.edu/~SAMInversion/

Paper: https://arxiv.org/abs/2206.08357

@ArtificialIntelligencedl
👍5
🦾 Bi-DexHands: Bimanual Dexterous Manipulation via Reinforcement Learning

Bi-DexHands provides a collection of bimanual dexterous manipulations tasks and reinforcement learning algorithms.

Github: https://github.com/pku-marl/dexteroushands

Isaac Gym: https://developer.nvidia.com/isaac-gym

Paper: hhttps://arxiv.org/abs/2206.08686

@ArtificialIntelligencedl
👍6
🕹 SENSORIUM 2022 Competition

The Sensorium competition on predicting large-scale mouse primary visual cortex activity

Github: https://github.com/sinzlab/sensorium

Website: https://sensorium2022.net/

Paper: https://arxiv.org/abs/2206.08666v1

@ArtificialIntelligencedl
👍5
🔎 Object Structural Points Representation for Graph-based Semantic Monocular Localization and Mapping

Github:https://github.com/airlab-polimi/c-slam

Tutorial: http://ros.org/wiki/catkin/Tutorials/create_a_workspace

Paper: https://arxiv.org/abs/2206.10263v1

@ArtificialIntelligencedl
👍5
🌩 Object Structural Points Representation for Graph-based Semantic Monocular Localization and Mapping

PyGOD is a Python library for graph outlier detection (anomaly detection).

Github: https://github.com/pygod-team/pygod

Dataset : https://paperswithcode.com/dataset/ogb

Paper: https://arxiv.org/abs/2206.10071v1

@ArtificialIntelligencedl
👍7
💻 DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation

DaisyRec-v2.0 is a Python toolkit developed for benchmarking top-N recommendation task.

Github: https://github.com/recsys-benchmark/daisyrec-v2.0

Command Generator : http://daisyrecguicommandgenerator.pythonanywhere.com/

Paper: https://arxiv.org/abs/2206.10848v1

Tutorial: https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/main/DaisyRec-v2.0-Tutorial.ipynb

@ArtificialIntelligencedl
👍7
Frequency Dynamic Convolution-Recurrent Neural Network (FDY-CRNN) for Sound Event Detection

Frequency Dynamic Convolution applied kernel that adapts to each freqeuncy bin of input, in order to remove tranlation equivariance of 2D convolution along the frequency axis.

Github: https://github.com/frednam93/FDY-SED

Paper: https://arxiv.org/abs/2206.11645v1

Dataset: https://paperswithcode.com/dataset/desed

@ArtificialIntelligencedl
🔥2