Artificial Intelligence – Telegram
Artificial Intelligence
16.5K subscribers
1.11K photos
9 videos
1 file
1.97K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - 🔥 best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python книги📚

@datascienceiot - ml 📚

РКН: clck.ru/3FmwZw
Download Telegram
💻 DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation

DaisyRec-v2.0 is a Python toolkit developed for benchmarking top-N recommendation task.

Github: https://github.com/recsys-benchmark/daisyrec-v2.0

Command Generator : http://daisyrecguicommandgenerator.pythonanywhere.com/

Paper: https://arxiv.org/abs/2206.10848v1

Tutorial: https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/main/DaisyRec-v2.0-Tutorial.ipynb

@ArtificialIntelligencedl
👍7
Frequency Dynamic Convolution-Recurrent Neural Network (FDY-CRNN) for Sound Event Detection

Frequency Dynamic Convolution applied kernel that adapts to each freqeuncy bin of input, in order to remove tranlation equivariance of 2D convolution along the frequency axis.

Github: https://github.com/frednam93/FDY-SED

Paper: https://arxiv.org/abs/2206.11645v1

Dataset: https://paperswithcode.com/dataset/desed

@ArtificialIntelligencedl
🔥2
🌅 Retrosynthetic Planning with Retro*

graph-based search policy that eliminates the redundant explorations of any intermediate molecules.

Github: https://github.com/binghong-ml/retro_star

Paper: https://arxiv.org/abs/2206.11477v1

Dataset: https://www.dropbox.com/s/ar9cupb18hv96gj/retro_data.zip?dl=0

@ArtificialIntelligencedl
🔥4
DDPM-CD: Remote Sensing Change Detection using Denoising Diffusion Probabilistic Models

Github: https://github.com/wgcban/ddpm-cd

Project: https://www.wgcban.com/research#h.ar24vwqlm021

Paper: https://arxiv.org/abs/2206.11892

Dataset: https://paperswithcode.com/dataset/fmow

@ArtificialIntelligencedl
👍2
BigBIO: Biomedical Datasets

Currently BigBIO provides support for

more than 120 biomedical datasets
10 languages
Harmonized dataset schemas by task type
Metadata on licensing, coarse/fine-grained task types, domain, and more!


Github: https://github.com/bigscience-workshop/biomedical

Paper: https://arxiv.org/abs/2206.15076v1

Dataset: https://paperswithcode.com/dataset/bioasq

@ArtificialIntelligencedl
👍2🔥1
🚗 MMFN: Multi-Modal Fusion Net for End-to-End Autonomous Driving

A novel approach to efficiently extract features from vectorized High-Definition (HD) maps and utilize them in the end-to-end driving tasks.

Github: https://github.com/Kin-Zhang/mmfn

Paper: https://arxiv.org/abs/2207.00186v1

Dataset: https://github.com/carla-simulator/leaderboard/issues/81

@ArtificialIntelligencedl
👍4
AlphaCode Explained: AI Code Generation

AlphaCode is DeepMind's new massive language model for generating code. It is similar to OpenAI Codex, except for in the paper they provide a bit more analysis. The field of NLP within AI and ML has exploded get a lot more papers all the time. This video can help you understand how AlphaCode works and what some of the key takeaways are.


youtube: https://www.youtube.com/watch?v=t3Yh56efKGI
blog post: https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode
paper: https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
👍7👎3🤔1
Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation

Github: https://github.com/haomo-ai/motionseg3d

Paper: https://arxiv.org/abs/2207.02201v1

Dataset: https://paperswithcode.com/dataset/lidar-mos

@ArtificialIntelligencedl
👍5
Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification

Tip-Adapter is a training-free adaption method for CLIP to conduct few-shot classification.

Github: https://github.com/gaopengcuhk/tip-adapter

Paper: https://arxiv.org/abs/2207.09519v1

Dataset: https://paperswithcode.com/dataset/oxford-102-flower
👎1🔥1
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling

Github: https://github.com/timothyhtimothy/fast-vqa

Paper: https://arxiv.org/abs/2207.02595v1

Dataset: https://paperswithcode.com/dataset/kinetics

@ArtificialIntelligencedl
👍8
👍9🔥1🥰1
SFNet: Faster, Accurate, and Domain Agnostic Semantic Segmentation via Semantic Flow

Github: https://github.com/lxtGH/SFSegNets

Paper: https://arxiv.org/abs/2207.04415v1

Dataset : https://paperswithcode.com/dataset/idd

@ArtificialIntelligencedl
👍6