👨🏻🎓 https://academicpositions.de/ad/international-max-planck-research-school-for-molecular-and-cellular-life-sciences/2018/the-international-max-planck-research-school-for-molecular-life-sciences-imprs-ls/93747?utm_medium=email&utm_source=transactional&utm_campaign=Job+alerts
#phd
#phd
academicpositions.de
The International Max Planck Research School for Molecular Life Sciences (IMPRS-LS) - Academic Positions
The International Max Planck Research School for Molecular Life Sciences (IMPRSLS), jointly conducted by Munich based Max Planck Institutes and Universities, is an internationally recognized center of scientific and educational excellence..
Forwarded from رادیوفیزیک 📣
This media is not supported in your browser
VIEW IN TELEGRAM
آیا بین رفتار یک سیستم در #مقیاسهای مختلف شباهتی یا تفاوتی وجود دارد؟ اگر اینگونه است، چهطور میشود ارتباط بین رفتار سیستمی را در مقیاسهای مختلف دید؟!
عباس کریمی در مورد ایده #بازبهنجارش میگوید!
عباس کریمی در مورد ایده #بازبهنجارش میگوید!
💥 One reason #fractional differential equations can be useful is that fractional derivatives contain non-local information.
A wonderful interpretation of the fractional laplacian is through long jump random walks: https://t.co/aWmJUCFKef
A wonderful interpretation of the fractional laplacian is through long jump random walks: https://t.co/aWmJUCFKef
#opp
〽️ 4 postdoc positions in Complex Systems (IFISC, Mallorca)
IFISC offers four junior postdoc positions (1+1 years) to work in any of the research lines of its María de Maeztu program on Information processing in and by Complex Systems
L1: Information processing in biological systems
L2: Brain-inspired analog computing in photonic and electronic systems
L3: Quantum information: decoherence, dissipation, and transmission
L4: Information processing in socio-technical systems
Additional details and how to apply can be found at
🌐 https://ifisc.uib-csic.es/en/about-ifisc/join-us/open-positions-post-docs-2019/
⏱Deadline for application: January 15, 2019
🎲 @ComplexSys
〽️ 4 postdoc positions in Complex Systems (IFISC, Mallorca)
IFISC offers four junior postdoc positions (1+1 years) to work in any of the research lines of its María de Maeztu program on Information processing in and by Complex Systems
L1: Information processing in biological systems
L2: Brain-inspired analog computing in photonic and electronic systems
L3: Quantum information: decoherence, dissipation, and transmission
L4: Information processing in socio-technical systems
Additional details and how to apply can be found at
🌐 https://ifisc.uib-csic.es/en/about-ifisc/join-us/open-positions-post-docs-2019/
⏱Deadline for application: January 15, 2019
🎲 @ComplexSys
ifisc.uib-csic.es
Open positions for María de Maeztu junior Post-Docs in 2019
IFISC offers up to four junior postdoc positions to work in any of the strategic research lines of the María ...
Trending PhysRevE:
Information loss under coarse graining: A geometric approach
https://t.co/2v0DnakLFI
Information loss under coarse graining: A geometric approach
https://t.co/2v0DnakLFI
🔔 #زنگ_پژوهش با موضوع "تحلیل بحران اقتصادی کشور از منظر فیزیک اقتصاد"
🗣 علی حسینی
🗓 یکشنبه، ۱۱ آذرماه
🕜 ساعت ۱۳:۳۰ تا ۱۴:۳۰
🏛 دانشکده فیزیک دانشگاه شریف
© @anjoman_elmi_phys_sut
🎲 @ComplexSys
🗣 علی حسینی
🗓 یکشنبه، ۱۱ آذرماه
🕜 ساعت ۱۳:۳۰ تا ۱۴:۳۰
🏛 دانشکده فیزیک دانشگاه شریف
© @anjoman_elmi_phys_sut
🎲 @ComplexSys
Forwarded from انجمن علمی فیزیک بهشتی (SBU)
#سمینار_عمومی این هفته
ترسیم نقشه روشنفکری مطالعات خاورمیانه با استفاده از 《تحلیل هماستنادی نویسندگان》
- سهشنبه ۶ آذر؛ ساعت ۱۶ الی ۱۷
- تالار ابن هیثم، دانشکده فیزیک
کانال انجمن علمی فیزیک بهشتی
@sbu_physics
ترسیم نقشه روشنفکری مطالعات خاورمیانه با استفاده از 《تحلیل هماستنادی نویسندگان》
- سهشنبه ۶ آذر؛ ساعت ۱۶ الی ۱۷
- تالار ابن هیثم، دانشکده فیزیک
کانال انجمن علمی فیزیک بهشتی
@sbu_physics
The Master program "Neural Information Processing - Computational
Neuroscience" covers theoretical and computational aspects of neuroscience.
Faculty include:
Peter Dayan, Matthias Bethge, Zhaoping Li, Martin Giese, Alexander
Ecker, Philipp Berens, Fabian Sinz, Anna Levina and many more!
Students obtain extensive training in computational modeling of neural
systems, machine learning data analysis and neuroscience. While the
first year is dedicated to course work at the graduate level, the second
year provides hands-on research experience in leading labs in lab
rotations and during thesis work. After finishing the Master program,
students can smoothly transition to our PhD program and continue their
research.
The program provides research-oriented training in a wide spectrum of
basic computational neuroscience topics with different options:
machine learning for neuroscience and neural data analysis
models of neural dynamics and coding
motor control, rehabilitation robotics and brain-computer interfaces
systems neuroscience and neurophysiology
data science, bioinformatics and programming
behaviour and cognition
The deadline for applications is January, 15th (written documents must
be in Tübingen).
For more information please visit:
https://www.bccn-tuebingen.de/education/master-of-science-neural-information-processing.html
Please forward to interested students at the BSc level
Neuroscience" covers theoretical and computational aspects of neuroscience.
Faculty include:
Peter Dayan, Matthias Bethge, Zhaoping Li, Martin Giese, Alexander
Ecker, Philipp Berens, Fabian Sinz, Anna Levina and many more!
Students obtain extensive training in computational modeling of neural
systems, machine learning data analysis and neuroscience. While the
first year is dedicated to course work at the graduate level, the second
year provides hands-on research experience in leading labs in lab
rotations and during thesis work. After finishing the Master program,
students can smoothly transition to our PhD program and continue their
research.
The program provides research-oriented training in a wide spectrum of
basic computational neuroscience topics with different options:
machine learning for neuroscience and neural data analysis
models of neural dynamics and coding
motor control, rehabilitation robotics and brain-computer interfaces
systems neuroscience and neurophysiology
data science, bioinformatics and programming
behaviour and cognition
The deadline for applications is January, 15th (written documents must
be in Tübingen).
For more information please visit:
https://www.bccn-tuebingen.de/education/master-of-science-neural-information-processing.html
Please forward to interested students at the BSc level
Evoplex: A platform for agent-based modeling on networks
“extensible platform for developing agent-based models and multi-agent systems on networks”
https://t.co/wiFM5ADs2a
“extensible platform for developing agent-based models and multi-agent systems on networks”
https://t.co/wiFM5ADs2a
☄️ سنگ بنای مکانیک آماری شبکههای پیچیده در حقیقت این ایده بوده که «پیوندها» ذرات #موثر سیستم هستند و نه «رئوس»!
The Grand Canonical ensemble of weighted networks
Andrea Gabrielli, Rossana Mastrandrea, Guido Caldarelli, Giulio Cimini
https://arxiv.org/pdf/1811.11805
The cornerstone of statistical mechanics of complex networks is the idea that the links, and not the nodes, are the effective particles of the system. Here we formulate a mapping between weighted networks and lattice gasses, making the conceptual step forward of interpreting weighted links as particles with a generalised coordinate. This leads to the definition of the grand canonical ensemble of weighted complex networks. We derive exact expressions for the partition function and thermodynamic quantities, both in the cases of global and local (i.e., node-specific) constraints on density and mean energy of particles. We further show that, when modelling real cases of networks, the binary and weighted statistics of the ensemble can be disentangled, leading to a simplified framework for a range of practical applications.
The Grand Canonical ensemble of weighted networks
Andrea Gabrielli, Rossana Mastrandrea, Guido Caldarelli, Giulio Cimini
https://arxiv.org/pdf/1811.11805
The cornerstone of statistical mechanics of complex networks is the idea that the links, and not the nodes, are the effective particles of the system. Here we formulate a mapping between weighted networks and lattice gasses, making the conceptual step forward of interpreting weighted links as particles with a generalised coordinate. This leads to the definition of the grand canonical ensemble of weighted complex networks. We derive exact expressions for the partition function and thermodynamic quantities, both in the cases of global and local (i.e., node-specific) constraints on density and mean energy of particles. We further show that, when modelling real cases of networks, the binary and weighted statistics of the ensemble can be disentangled, leading to a simplified framework for a range of practical applications.
#سمینارهای_هفتگی مرکز شبکههای پیچیده و مردمشناسی دانشگاه شهید بهشتی
⏰ یکشنبه، ۱۱ آذر، ساعت ۱۶:۴۵
🏛 محل برگزاری: سالن ابن هیثم
@mhakim
⏰ یکشنبه، ۱۱ آذر، ساعت ۱۶:۴۵
🏛 محل برگزاری: سالن ابن هیثم
@mhakim
Introduction to Renormalization
Lead instructor: Simon DeDeo
https://www.complexityexplorer.org/courses/67-introduction-to-renormalization
Syllabus
Introduction to Renormalization
Markov Chains
Cellular Automata
Ising Model
Krohn-Rhodes Theorem
A Classical Analogy for Renormalization in Quantum Electrodynamics
Conclusion: The Future of Renormalization & Rate Distortion Theory
Homework
Lead instructor: Simon DeDeo
https://www.complexityexplorer.org/courses/67-introduction-to-renormalization
Syllabus
Introduction to Renormalization
Markov Chains
Cellular Automata
Ising Model
Krohn-Rhodes Theorem
A Classical Analogy for Renormalization in Quantum Electrodynamics
Conclusion: The Future of Renormalization & Rate Distortion Theory
Homework
I'm looking forward to introducing Bayesian past network inference to an interdisciplinary audience of network scientists and *archeologists* this Thursday. Connected Past is such a cool meeting idea! https://t.co/yx51QyS2ET
The 2019 Summer Institute in Computational Social Science will have a partner location in Istanbul https://t.co/bcMchnVVsj