✅ Learn New Skills FREE 🔰
1. Web Development ➝
◀️ https://news.1rj.ru/str/webdevcoursefree
2. CSS ➝
◀️ http://css-tricks.com
3. JavaScript ➝
◀️ http://t.me/javanoscript_courses
4. React ➝
◀️ http://react-tutorial.app
5. Data Engineering ➝
◀️ https://news.1rj.ru/str/sql_engineer
6. Data Science ➝
◀️ https://news.1rj.ru/str/datasciencefun
7. Python ➝
◀️ http://pythontutorial.net
8. SQL ➝
◀️ https://news.1rj.ru/str/sqlanalyst
9. Git and GitHub ➝
◀️ http://GitFluence.com
10. Blockchain ➝
◀️ https://news.1rj.ru/str/Bitcoin_Crypto_Web
11. Mongo DB ➝
◀️ http://mongodb.com
12. Node JS ➝
◀️ http://nodejsera.com
13. English Speaking ➝
◀️ https://news.1rj.ru/str/englishlearnerspro
14. C#➝
◀️ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excel➝
◀️ https://news.1rj.ru/str/excel_analyst
16. Generative AI➝
◀️ https://news.1rj.ru/str/generativeai_gpt
17. Java
◀️ https://news.1rj.ru/str/Java_Programming_Notes
18. Artificial Intelligence
◀️ https://news.1rj.ru/str/machinelearning_deeplearning
19. Data Structure & Algorithms
◀️ https://news.1rj.ru/str/dsabooks
20. Backend Development
◀️ https://imp.i115008.net/rn2nyy
21. Python for AI
◀️ https://deeplearning.ai/short-courses/ai-python-for-beginners/
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
1. Web Development ➝
◀️ https://news.1rj.ru/str/webdevcoursefree
2. CSS ➝
◀️ http://css-tricks.com
3. JavaScript ➝
◀️ http://t.me/javanoscript_courses
4. React ➝
◀️ http://react-tutorial.app
5. Data Engineering ➝
◀️ https://news.1rj.ru/str/sql_engineer
6. Data Science ➝
◀️ https://news.1rj.ru/str/datasciencefun
7. Python ➝
◀️ http://pythontutorial.net
8. SQL ➝
◀️ https://news.1rj.ru/str/sqlanalyst
9. Git and GitHub ➝
◀️ http://GitFluence.com
10. Blockchain ➝
◀️ https://news.1rj.ru/str/Bitcoin_Crypto_Web
11. Mongo DB ➝
◀️ http://mongodb.com
12. Node JS ➝
◀️ http://nodejsera.com
13. English Speaking ➝
◀️ https://news.1rj.ru/str/englishlearnerspro
14. C#➝
◀️ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excel➝
◀️ https://news.1rj.ru/str/excel_analyst
16. Generative AI➝
◀️ https://news.1rj.ru/str/generativeai_gpt
17. Java
◀️ https://news.1rj.ru/str/Java_Programming_Notes
18. Artificial Intelligence
◀️ https://news.1rj.ru/str/machinelearning_deeplearning
19. Data Structure & Algorithms
◀️ https://news.1rj.ru/str/dsabooks
20. Backend Development
◀️ https://imp.i115008.net/rn2nyy
21. Python for AI
◀️ https://deeplearning.ai/short-courses/ai-python-for-beginners/
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
❤1
Q1: How would you analyze data to understand user connection patterns on a professional network?
Ans: I'd use graph databases like Neo4j for social network analysis. By analyzing connection patterns, I can identify influencers or isolated communities.
Q2: Describe a challenging data visualization you created to represent user engagement metrics.
Ans: I visualized multi-dimensional data showing user engagement across features, regions, and time using tools like D3.js, creating an interactive dashboard with drill-down capabilities.
Q3: How would you identify and target passive job seekers on LinkedIn?
Ans: I'd analyze user behavior patterns, like increased profile updates, frequent visits to job postings, or engagement with career-related content, to identify potential passive job seekers.
Q4: How do you measure the effectiveness of a new feature launched on LinkedIn?
Ans: I'd set up A/B tests, comparing user engagement metrics between those who have access to the new feature and a control group. I'd then analyze metrics like time spent, feature usage frequency, and overall platform engagement to measure effectiveness.
Ans: I'd use graph databases like Neo4j for social network analysis. By analyzing connection patterns, I can identify influencers or isolated communities.
Q2: Describe a challenging data visualization you created to represent user engagement metrics.
Ans: I visualized multi-dimensional data showing user engagement across features, regions, and time using tools like D3.js, creating an interactive dashboard with drill-down capabilities.
Q3: How would you identify and target passive job seekers on LinkedIn?
Ans: I'd analyze user behavior patterns, like increased profile updates, frequent visits to job postings, or engagement with career-related content, to identify potential passive job seekers.
Q4: How do you measure the effectiveness of a new feature launched on LinkedIn?
Ans: I'd set up A/B tests, comparing user engagement metrics between those who have access to the new feature and a control group. I'd then analyze metrics like time spent, feature usage frequency, and overall platform engagement to measure effectiveness.
❤1
📊 Data Analyst Roadmap (2025)
Master the Skills That Top Companies Are Hiring For!
📍 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
📍 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
📍 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
📍 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
📍 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
📍 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
📍 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
📍 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
📍 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
📍 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
✨ React ❤️ for more
Master the Skills That Top Companies Are Hiring For!
📍 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
📍 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
📍 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
📍 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
📍 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
📍 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
📍 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
📍 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
📍 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
📍 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
✨ React ❤️ for more
❤1
If you want to Excel in Data Science and become an expert, master these essential concepts:
Core Data Science Skills:
• Python for Data Science – Pandas, NumPy, Matplotlib, Seaborn
• SQL for Data Extraction – SELECT, JOIN, GROUP BY, CTEs, Window Functions
• Data Cleaning & Preprocessing – Handling missing data, outliers, duplicates
• Exploratory Data Analysis (EDA) – Visualizing data trends
Machine Learning (ML):
• Supervised Learning – Linear Regression, Decision Trees, Random Forest
• Unsupervised Learning – Clustering, PCA, Anomaly Detection
• Model Evaluation – Cross-validation, Confusion Matrix, ROC-AUC
• Hyperparameter Tuning – Grid Search, Random Search
Deep Learning (DL):
• Neural Networks – TensorFlow, PyTorch, Keras
• CNNs & RNNs – Image & sequential data processing
• Transformers & LLMs – GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
• Hadoop & Spark – Handling large datasets
• AWS, GCP, Azure – Cloud-based data science solutions
• MLOps – Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
• Probability & Hypothesis Testing – P-values, T-tests, Chi-square
• Linear Algebra & Calculus – Matrices, Vectors, Derivatives
• Time Series Analysis – ARIMA, Prophet, LSTMs
Real-World Applications:
• Recommendation Systems – Personalized AI suggestions
• NLP (Natural Language Processing) – Sentiment Analysis, Chatbots
• AI-Powered Business Insights – Data-driven decision-making
React ❤️ for more
Core Data Science Skills:
• Python for Data Science – Pandas, NumPy, Matplotlib, Seaborn
• SQL for Data Extraction – SELECT, JOIN, GROUP BY, CTEs, Window Functions
• Data Cleaning & Preprocessing – Handling missing data, outliers, duplicates
• Exploratory Data Analysis (EDA) – Visualizing data trends
Machine Learning (ML):
• Supervised Learning – Linear Regression, Decision Trees, Random Forest
• Unsupervised Learning – Clustering, PCA, Anomaly Detection
• Model Evaluation – Cross-validation, Confusion Matrix, ROC-AUC
• Hyperparameter Tuning – Grid Search, Random Search
Deep Learning (DL):
• Neural Networks – TensorFlow, PyTorch, Keras
• CNNs & RNNs – Image & sequential data processing
• Transformers & LLMs – GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
• Hadoop & Spark – Handling large datasets
• AWS, GCP, Azure – Cloud-based data science solutions
• MLOps – Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
• Probability & Hypothesis Testing – P-values, T-tests, Chi-square
• Linear Algebra & Calculus – Matrices, Vectors, Derivatives
• Time Series Analysis – ARIMA, Prophet, LSTMs
Real-World Applications:
• Recommendation Systems – Personalized AI suggestions
• NLP (Natural Language Processing) – Sentiment Analysis, Chatbots
• AI-Powered Business Insights – Data-driven decision-making
React ❤️ for more
❤1
Forwarded from SQL Programming Resources
𝟰 𝗕𝗲𝘀𝘁 𝗙𝗿𝗲𝗲 𝗦𝗤𝗟 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀😍
Want to break into Data Analytics?💫
It all starts with SQL — the language every data analyst needs to master. Whether you’re analyzing trends, pulling business reports, or cleaning datasets, SQL is at the heart of it all👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/44oj5Ds
Perfect for students, freshers, job seekers, or anyone transitioning into tech✅️
Want to break into Data Analytics?💫
It all starts with SQL — the language every data analyst needs to master. Whether you’re analyzing trends, pulling business reports, or cleaning datasets, SQL is at the heart of it all👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/44oj5Ds
Perfect for students, freshers, job seekers, or anyone transitioning into tech✅️
Future-Proof Skills for Data Analysts in 2025 & Beyond
1️⃣ AI-Powered Analytics 🤖 Leverage AI and AutoML tools like ChatGPT, DataRobot, and H2O.ai to automate insights and decision-making.
2️⃣ Generative AI for Data Analysis 🧠 Use AI for generating SQL queries, writing Python noscripts, and automating data storytelling.
3️⃣ Real-Time Data Processing ⚡ Learn streaming technologies like Apache Kafka and Apache Flink for real-time analytics.
4️⃣ DataOps & MLOps 🔄 Understand how to deploy and maintain machine learning models and analytical workflows in production environments.
5️⃣ Knowledge of Graph Databases 📊 Work with Neo4j and Amazon Neptune to analyze relationships in complex datasets.
6️⃣ Advanced Data Privacy & Ethics 🔐 Stay updated on GDPR, CCPA, and AI ethics to ensure responsible data handling.
7️⃣ No-Code & Low-Code Analytics 🛠️ Use platforms like Alteryx, Knime, and Google AutoML for rapid prototyping and automation.
8️⃣ API & Web Scraping Skills 🌍 Extract real-time data using APIs and web scraping tools like BeautifulSoup and Selenium.
9️⃣ Cross-Disciplinary Collaboration 🤝 Work with product managers, engineers, and business leaders to drive data-driven strategies.
🔟 Continuous Learning & Adaptability 🚀 Stay ahead by learning new technologies, attending conferences, and networking with industry experts.
Like for detailed explanation ❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
1️⃣ AI-Powered Analytics 🤖 Leverage AI and AutoML tools like ChatGPT, DataRobot, and H2O.ai to automate insights and decision-making.
2️⃣ Generative AI for Data Analysis 🧠 Use AI for generating SQL queries, writing Python noscripts, and automating data storytelling.
3️⃣ Real-Time Data Processing ⚡ Learn streaming technologies like Apache Kafka and Apache Flink for real-time analytics.
4️⃣ DataOps & MLOps 🔄 Understand how to deploy and maintain machine learning models and analytical workflows in production environments.
5️⃣ Knowledge of Graph Databases 📊 Work with Neo4j and Amazon Neptune to analyze relationships in complex datasets.
6️⃣ Advanced Data Privacy & Ethics 🔐 Stay updated on GDPR, CCPA, and AI ethics to ensure responsible data handling.
7️⃣ No-Code & Low-Code Analytics 🛠️ Use platforms like Alteryx, Knime, and Google AutoML for rapid prototyping and automation.
8️⃣ API & Web Scraping Skills 🌍 Extract real-time data using APIs and web scraping tools like BeautifulSoup and Selenium.
9️⃣ Cross-Disciplinary Collaboration 🤝 Work with product managers, engineers, and business leaders to drive data-driven strategies.
🔟 Continuous Learning & Adaptability 🚀 Stay ahead by learning new technologies, attending conferences, and networking with industry experts.
Like for detailed explanation ❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤1
𝗧𝗲𝗰𝗵 𝗝𝗼𝗯𝘀 𝗜𝗻 𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 | Across India😍
Companies Hiring:- Google, Microsoft, Cognizant, Infosys, TCS & Many More
Roles:- Data Analysts ,Data Scientits ,Software Engineers & Other roles
𝗔𝗽𝗽𝗹𝘆 𝗡𝗼𝘄👇:-
https://bit.ly/44qMX2k
Select your experience & Complete The Registration Process
✅ Start applying to jobs that fit your profile and boost your career growth!
Companies Hiring:- Google, Microsoft, Cognizant, Infosys, TCS & Many More
Roles:- Data Analysts ,Data Scientits ,Software Engineers & Other roles
𝗔𝗽𝗽𝗹𝘆 𝗡𝗼𝘄👇:-
https://bit.ly/44qMX2k
Select your experience & Complete The Registration Process
✅ Start applying to jobs that fit your profile and boost your career growth!
SQL is one of the core languages used in data science, powering everything from quick data retrieval to complex deep dive analysis. Whether you're a seasoned data scientist or just starting out, mastering SQL can boost your ability to analyze data, create robust pipelines, and deliver actionable insights.
Let’s dive into a comprehensive guide on SQL for Data Science!
I have broken it down into three key sections to help you:
𝟭. 𝗦𝗤𝗟 𝗖𝗼𝗻𝗰𝗲𝗽𝘁𝘀:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.
𝟮. 𝗦𝗤𝗟 𝗶𝗻 𝗗𝗮𝘆-𝘁𝗼-𝗗𝗮𝘆 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.
𝟯. 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗦𝗤𝗟 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
Let’s dive into a comprehensive guide on SQL for Data Science!
I have broken it down into three key sections to help you:
𝟭. 𝗦𝗤𝗟 𝗖𝗼𝗻𝗰𝗲𝗽𝘁𝘀:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.
𝟮. 𝗦𝗤𝗟 𝗶𝗻 𝗗𝗮𝘆-𝘁𝗼-𝗗𝗮𝘆 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.
𝟯. 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗦𝗤𝗟 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
❤1
𝗧𝗼𝗽 𝟱 𝗪𝗲𝗯𝘀𝗶𝘁𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗝𝗮𝘃𝗮𝗦𝗰𝗿𝗶𝗽𝘁 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Learning JavaScript doesn’t have to be boring anymore!💫
If endless tutorials make your eyes glaze over, we’ve got just the thing — these super fun & interactive platforms turn learning JavaScript into a game👨💻
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3T4yYbP
Perfect for daily practice, weekend sprints, or anyone who learns better with hands-on interaction!9✅️
Learning JavaScript doesn’t have to be boring anymore!💫
If endless tutorials make your eyes glaze over, we’ve got just the thing — these super fun & interactive platforms turn learning JavaScript into a game👨💻
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3T4yYbP
Perfect for daily practice, weekend sprints, or anyone who learns better with hands-on interaction!9✅️
SQL Basics for Data Analysts
SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.
1️⃣ Understanding Databases & Tables
Databases store structured data in tables.
Tables contain rows (records) and columns (fields).
Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).
2️⃣ Basic SQL Commands
Let's start with some fundamental queries:
🔹 SELECT – Retrieve Data
🔹 WHERE – Filter Data
🔹 ORDER BY – Sort Data
🔹 LIMIT – Restrict Number of Results
🔹 DISTINCT – Remove Duplicates
Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.
You can find free SQL Resources here
👇👇
https://news.1rj.ru/str/mysqldata
Like this post if you want me to continue covering all the topics! 👍❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
#sql
SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.
1️⃣ Understanding Databases & Tables
Databases store structured data in tables.
Tables contain rows (records) and columns (fields).
Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).
2️⃣ Basic SQL Commands
Let's start with some fundamental queries:
🔹 SELECT – Retrieve Data
SELECT * FROM employees; -- Fetch all columns from 'employees' table SELECT name, salary FROM employees; -- Fetch specific columns
🔹 WHERE – Filter Data
SELECT * FROM employees WHERE department = 'Sales'; -- Filter by department SELECT * FROM employees WHERE salary > 50000; -- Filter by salary
🔹 ORDER BY – Sort Data
SELECT * FROM employees ORDER BY salary DESC; -- Sort by salary (highest first) SELECT name, hire_date FROM employees ORDER BY hire_date ASC; -- Sort by hire date (oldest first)
🔹 LIMIT – Restrict Number of Results
SELECT * FROM employees LIMIT 5; -- Fetch only 5 rows SELECT * FROM employees WHERE department = 'HR' LIMIT 10; -- Fetch first 10 HR employees
🔹 DISTINCT – Remove Duplicates
SELECT DISTINCT department FROM employees; -- Show unique departments
Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.
You can find free SQL Resources here
👇👇
https://news.1rj.ru/str/mysqldata
Like this post if you want me to continue covering all the topics! 👍❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
#sql
❤1
𝟱 𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 + 𝗟𝗶𝗻𝗸𝗲𝗱𝗜𝗻 𝗖𝗮𝗿𝗲𝗲𝗿 𝗘𝘀𝘀𝗲𝗻𝘁𝗶𝗮𝗹 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲😍
Ready to upgrade your career without spending a dime?✨️
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!📲📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications📜✅️
Ready to upgrade your career without spending a dime?✨️
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!📲📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications📜✅️
Data Analyst Interview Questions with Answers
Q1: How would you handle real-time data streaming for analyzing user listening patterns?
Ans: I'd use platforms like Apache Kafka for real-time data ingestion. Using Python, I'd process this stream to identify real-time patterns and store aggregated data for further analysis.
Q2: Describe a situation where you had to use time series analysis to forecast a trend.
Ans: I analyzed monthly active users to forecast future growth. Using Python's statsmodels, I applied ARIMA modeling to the time series data and provided a forecast for the next six months.
Q3: How would you segment and analyze user behavior based on their music preferences?
Ans: I'd cluster users based on their listening history using unsupervised machine learning techniques like K-means clustering. This would help in creating personalized playlists or recommendations.
Q4: How do you handle missing or incomplete data in user listening logs?
Ans: I'd use imputation methods based on the nature of the missing data. For instance, if a user's listening time is missing, I might impute it based on their average listening time or use collaborative filtering methods to estimate it based on similar users.
Q1: How would you handle real-time data streaming for analyzing user listening patterns?
Ans: I'd use platforms like Apache Kafka for real-time data ingestion. Using Python, I'd process this stream to identify real-time patterns and store aggregated data for further analysis.
Q2: Describe a situation where you had to use time series analysis to forecast a trend.
Ans: I analyzed monthly active users to forecast future growth. Using Python's statsmodels, I applied ARIMA modeling to the time series data and provided a forecast for the next six months.
Q3: How would you segment and analyze user behavior based on their music preferences?
Ans: I'd cluster users based on their listening history using unsupervised machine learning techniques like K-means clustering. This would help in creating personalized playlists or recommendations.
Q4: How do you handle missing or incomplete data in user listening logs?
Ans: I'd use imputation methods based on the nature of the missing data. For instance, if a user's listening time is missing, I might impute it based on their average listening time or use collaborative filtering methods to estimate it based on similar users.
❤2
𝗧𝗼𝗽 𝟲 𝗙𝗥𝗘𝗘 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 𝗣𝗹𝗮𝘆𝗹𝗶𝘀𝘁𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗦𝗤𝗟 𝗳𝗿𝗼𝗺 𝗦𝗰𝗿𝗮𝘁𝗰𝗵 (𝗣𝗲𝗿𝗳𝗲𝗰𝘁 𝗳𝗼𝗿 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀)😍
Want to master SQL without spending a rupee?💰
You don’t need premium subnoscriptions or paid courses — these free YouTube playlists are all you need to understand databases, write queries, and even crack job interviews with confidence👨🎓📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HREv30
Hit play and grow at your own pace!
✅️
Want to master SQL without spending a rupee?💰
You don’t need premium subnoscriptions or paid courses — these free YouTube playlists are all you need to understand databases, write queries, and even crack job interviews with confidence👨🎓📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HREv30
Hit play and grow at your own pace!
✅️
❤1
Core data science concepts you should know:
🔢 1. Statistics & Probability
Denoscriptive statistics: Mean, median, mode, standard deviation, variance
Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA
Probability distributions: Normal, Binomial, Poisson, Uniform
Bayes' Theorem
Central Limit Theorem
📊 2. Data Wrangling & Cleaning
Handling missing values
Outlier detection and treatment
Data transformation (scaling, encoding, normalization)
Feature engineering
Dealing with imbalanced data
📈 3. Exploratory Data Analysis (EDA)
Univariate, bivariate, and multivariate analysis
Correlation and covariance
Data visualization tools: Matplotlib, Seaborn, Plotly
Insights generation through visual storytelling
🤖 4. Machine Learning Fundamentals
Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN
Unsupervised Learning: K-means, hierarchical clustering, PCA
Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC
Cross-validation and overfitting/underfitting
Bias-variance tradeoff
🧠 5. Deep Learning (Basics)
Neural networks: Perceptron, MLP
Activation functions (ReLU, Sigmoid, Tanh)
Backpropagation
Gradient descent and learning rate
CNNs and RNNs (intro level)
🗃️ 6. Data Structures & Algorithms (DSA)
Arrays, lists, dictionaries, sets
Sorting and searching algorithms
Time and space complexity (Big-O notation)
Common problems: string manipulation, matrix operations, recursion
💾 7. SQL & Databases
SELECT, WHERE, GROUP BY, HAVING
JOINS (inner, left, right, full)
Subqueries and CTEs
Window functions
Indexing and normalization
📦 8. Tools & Libraries
Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch
R: dplyr, ggplot2, caret
Jupyter Notebooks for experimentation
Git and GitHub for version control
🧪 9. A/B Testing & Experimentation
Control vs. treatment group
Hypothesis formulation
Significance level, p-value interpretation
Power analysis
🌐 10. Business Acumen & Storytelling
Translating data insights into business value
Crafting narratives with data
Building dashboards (Power BI, Tableau)
Knowing KPIs and business metrics
React ❤️ for more
🔢 1. Statistics & Probability
Denoscriptive statistics: Mean, median, mode, standard deviation, variance
Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA
Probability distributions: Normal, Binomial, Poisson, Uniform
Bayes' Theorem
Central Limit Theorem
📊 2. Data Wrangling & Cleaning
Handling missing values
Outlier detection and treatment
Data transformation (scaling, encoding, normalization)
Feature engineering
Dealing with imbalanced data
📈 3. Exploratory Data Analysis (EDA)
Univariate, bivariate, and multivariate analysis
Correlation and covariance
Data visualization tools: Matplotlib, Seaborn, Plotly
Insights generation through visual storytelling
🤖 4. Machine Learning Fundamentals
Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN
Unsupervised Learning: K-means, hierarchical clustering, PCA
Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC
Cross-validation and overfitting/underfitting
Bias-variance tradeoff
🧠 5. Deep Learning (Basics)
Neural networks: Perceptron, MLP
Activation functions (ReLU, Sigmoid, Tanh)
Backpropagation
Gradient descent and learning rate
CNNs and RNNs (intro level)
🗃️ 6. Data Structures & Algorithms (DSA)
Arrays, lists, dictionaries, sets
Sorting and searching algorithms
Time and space complexity (Big-O notation)
Common problems: string manipulation, matrix operations, recursion
💾 7. SQL & Databases
SELECT, WHERE, GROUP BY, HAVING
JOINS (inner, left, right, full)
Subqueries and CTEs
Window functions
Indexing and normalization
📦 8. Tools & Libraries
Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch
R: dplyr, ggplot2, caret
Jupyter Notebooks for experimentation
Git and GitHub for version control
🧪 9. A/B Testing & Experimentation
Control vs. treatment group
Hypothesis formulation
Significance level, p-value interpretation
Power analysis
🌐 10. Business Acumen & Storytelling
Translating data insights into business value
Crafting narratives with data
Building dashboards (Power BI, Tableau)
Knowing KPIs and business metrics
React ❤️ for more
❤2
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗙𝗥𝗘𝗘 𝗗𝗲𝗺𝗼 𝗠𝗮𝘀𝘁𝗲𝗿𝗰𝗹𝗮𝘀𝘀 𝗜𝗻 𝗣𝘂𝗻𝗲 😍
📊 “Data Analyst” is one of the hottest careers in tech — and guess what? NO coding needed!
Learn Data Analytics in Pune with Hands-on Training, Industry Projects, and 100% Placement Assistance.
𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀 :-
- 100% Placement Assistance
- 500+ Hiring Partners
- Weekly Hiring Drives
𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:-
https://pdlink.in/45p4GrC
Location:- Acciojob Skill Centre ,Baner, Pune
📊 “Data Analyst” is one of the hottest careers in tech — and guess what? NO coding needed!
Learn Data Analytics in Pune with Hands-on Training, Industry Projects, and 100% Placement Assistance.
𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀 :-
- 100% Placement Assistance
- 500+ Hiring Partners
- Weekly Hiring Drives
𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:-
https://pdlink.in/45p4GrC
Location:- Acciojob Skill Centre ,Baner, Pune
❤1
Essential Topics to Master Data Analytics Interviews: 🚀
SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some ❤️ if you're ready to elevate your data analytics journey! 📊
ENJOY LEARNING 👍👍
SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some ❤️ if you're ready to elevate your data analytics journey! 📊
ENJOY LEARNING 👍👍
❤1
Forwarded from Data Analytics
𝟱 𝗙𝗥𝗘𝗘 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗳𝗼𝗿 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀 𝗯𝘆 𝗛𝗮𝗿𝘃𝗮𝗿𝗱, 𝗜𝗕𝗠, 𝗨𝗱𝗮𝗰𝗶𝘁𝘆 & 𝗠𝗼𝗿𝗲😍
Looking to learn Python from scratch—without spending a rupee? 💻
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion🔥👨🎓
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HNeyBQ
Kickstart your career✅️
Looking to learn Python from scratch—without spending a rupee? 💻
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion🔥👨🎓
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HNeyBQ
Kickstart your career✅️
Top 10 machine Learning algorithms
1. Linear Regression: Linear regression is a simple and commonly used algorithm for predicting a continuous target variable based on one or more input features. It assumes a linear relationship between the input variables and the output.
2. Logistic Regression: Logistic regression is used for binary classification problems where the target variable has two classes. It estimates the probability that a given input belongs to a particular class.
3. Decision Trees: Decision trees are a popular algorithm for both classification and regression tasks. They partition the feature space into regions based on the input variables and make predictions by following a tree-like structure.
4. Random Forest: Random forest is an ensemble learning method that combines multiple decision trees to improve prediction accuracy. It reduces overfitting and provides robust predictions by averaging the results of individual trees.
5. Support Vector Machines (SVM): SVM is a powerful algorithm for both classification and regression tasks. It finds the optimal hyperplane that separates different classes in the feature space, maximizing the margin between classes.
6. K-Nearest Neighbors (KNN): KNN is a simple and intuitive algorithm for classification and regression tasks. It makes predictions based on the similarity of input data points to their k nearest neighbors in the training set.
7. Naive Bayes: Naive Bayes is a probabilistic algorithm based on Bayes' theorem that is commonly used for classification tasks. It assumes that the features are conditionally independent given the class label.
8. Neural Networks: Neural networks are a versatile and powerful class of algorithms inspired by the human brain. They consist of interconnected layers of neurons that learn complex patterns in the data through training.
9. Gradient Boosting Machines (GBM): GBM is an ensemble learning method that builds a series of weak learners sequentially to improve prediction accuracy. It combines multiple decision trees in a boosting framework to minimize prediction errors.
10. Principal Component Analysis (PCA): PCA is a dimensionality reduction technique that transforms high-dimensional data into a lower-dimensional space while preserving as much variance as possible. It helps in visualizing and understanding the underlying structure of the data.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
1. Linear Regression: Linear regression is a simple and commonly used algorithm for predicting a continuous target variable based on one or more input features. It assumes a linear relationship between the input variables and the output.
2. Logistic Regression: Logistic regression is used for binary classification problems where the target variable has two classes. It estimates the probability that a given input belongs to a particular class.
3. Decision Trees: Decision trees are a popular algorithm for both classification and regression tasks. They partition the feature space into regions based on the input variables and make predictions by following a tree-like structure.
4. Random Forest: Random forest is an ensemble learning method that combines multiple decision trees to improve prediction accuracy. It reduces overfitting and provides robust predictions by averaging the results of individual trees.
5. Support Vector Machines (SVM): SVM is a powerful algorithm for both classification and regression tasks. It finds the optimal hyperplane that separates different classes in the feature space, maximizing the margin between classes.
6. K-Nearest Neighbors (KNN): KNN is a simple and intuitive algorithm for classification and regression tasks. It makes predictions based on the similarity of input data points to their k nearest neighbors in the training set.
7. Naive Bayes: Naive Bayes is a probabilistic algorithm based on Bayes' theorem that is commonly used for classification tasks. It assumes that the features are conditionally independent given the class label.
8. Neural Networks: Neural networks are a versatile and powerful class of algorithms inspired by the human brain. They consist of interconnected layers of neurons that learn complex patterns in the data through training.
9. Gradient Boosting Machines (GBM): GBM is an ensemble learning method that builds a series of weak learners sequentially to improve prediction accuracy. It combines multiple decision trees in a boosting framework to minimize prediction errors.
10. Principal Component Analysis (PCA): PCA is a dimensionality reduction technique that transforms high-dimensional data into a lower-dimensional space while preserving as much variance as possible. It helps in visualizing and understanding the underlying structure of the data.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
❤2
🎓 𝗨𝗽𝗴𝗿𝗮𝗱𝗲 𝗬𝗼𝘂𝗿 𝗦𝗸𝗶𝗹𝗹𝘀 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝗜𝗻 𝟮𝟬𝟮𝟱
Access 1000+ free courses in top domains like:
🔹 AI & GenAI
🔹 Data Science
🔹 Digital Marketing
🔹 UI/UX Design & more
✅ Learn from top faculty & industry experts
✅ Get industry-recognized certificates
✅ Boost your CV with valuable credentials
📌 Start learning today — it’s 100% free!
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4dJ27Ta
Enroll For FREE & Get Certified 🎓
Access 1000+ free courses in top domains like:
🔹 AI & GenAI
🔹 Data Science
🔹 Digital Marketing
🔹 UI/UX Design & more
✅ Learn from top faculty & industry experts
✅ Get industry-recognized certificates
✅ Boost your CV with valuable credentials
📌 Start learning today — it’s 100% free!
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4dJ27Ta
Enroll For FREE & Get Certified 🎓
❤2
1. What is the difference between the RANK() and DENSE_RANK() functions?
The RANK() function in the result set defines the rank of each row within your ordered partition. If both rows have the same rank, the next number in the ranking will be the previous rank plus a number of duplicates. If we have three records at rank 4, for example, the next level indicated is 7. The DENSE_RANK() function assigns a distinct rank to each row within a partition based on the provided column value, with no gaps. If we have three records at rank 4, for example, the next level indicated is 5.
2. Explain One-hot encoding and Label Encoding. How do they affect the dimensionality of the given dataset?
One-hot encoding is the representation of categorical variables as binary vectors. Label Encoding is converting labels/words into numeric form. Using one-hot encoding increases the dimensionality of the data set. Label encoding doesn’t affect the dimensionality of the data set. One-hot encoding creates a new variable for each level in the variable whereas, in Label encoding, the levels of a variable get encoded as 1 and 0.
3. What is the shortcut to add a filter to a table in EXCEL?
The filter mechanism is used when you want to display only specific data from the entire dataset. By doing so, there is no change being made to the data. The shortcut to add a filter to a table is Ctrl+Shift+L.
4. What is DAX in Power BI?
DAX stands for Data Analysis Expressions. It's a collection of functions, operators, and constants used in formulas to calculate and return values. In other words, it helps you create new info from data you already have.
5. Define shelves and sets in Tableau?
Shelves: Every worksheet in Tableau will have shelves such as columns, rows, marks, filters, pages, and more. By placing filters on shelves we can build our own visualization structure. We can control the marks by including or excluding data.
Sets: The sets are used to compute a condition on which the dataset will be prepared. Data will be grouped together based on a condition. Fields which is responsible for grouping are known assets. For example – students having grades of more than 70%.
The RANK() function in the result set defines the rank of each row within your ordered partition. If both rows have the same rank, the next number in the ranking will be the previous rank plus a number of duplicates. If we have three records at rank 4, for example, the next level indicated is 7. The DENSE_RANK() function assigns a distinct rank to each row within a partition based on the provided column value, with no gaps. If we have three records at rank 4, for example, the next level indicated is 5.
2. Explain One-hot encoding and Label Encoding. How do they affect the dimensionality of the given dataset?
One-hot encoding is the representation of categorical variables as binary vectors. Label Encoding is converting labels/words into numeric form. Using one-hot encoding increases the dimensionality of the data set. Label encoding doesn’t affect the dimensionality of the data set. One-hot encoding creates a new variable for each level in the variable whereas, in Label encoding, the levels of a variable get encoded as 1 and 0.
3. What is the shortcut to add a filter to a table in EXCEL?
The filter mechanism is used when you want to display only specific data from the entire dataset. By doing so, there is no change being made to the data. The shortcut to add a filter to a table is Ctrl+Shift+L.
4. What is DAX in Power BI?
DAX stands for Data Analysis Expressions. It's a collection of functions, operators, and constants used in formulas to calculate and return values. In other words, it helps you create new info from data you already have.
5. Define shelves and sets in Tableau?
Shelves: Every worksheet in Tableau will have shelves such as columns, rows, marks, filters, pages, and more. By placing filters on shelves we can build our own visualization structure. We can control the marks by including or excluding data.
Sets: The sets are used to compute a condition on which the dataset will be prepared. Data will be grouped together based on a condition. Fields which is responsible for grouping are known assets. For example – students having grades of more than 70%.
❤2
Forwarded from SQL Programming Resources
𝟭𝟬 𝗥𝗲𝗮𝗹 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 & 𝗛𝗼𝘄 𝘁𝗼 𝗔𝗻𝘀𝘄𝗲𝗿 𝗧𝗵𝗲𝗺 𝗟𝗶𝗸𝗲 𝗮 𝗣𝗿𝗼😍
💼 Data Analytics interviews can feel overwhelming ✨️
You’re expected to know SQL, Python, Excel, Power BI, and be ready with real-world logic👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HSnvtq
Enjoy Learning ✅️
💼 Data Analytics interviews can feel overwhelming ✨️
You’re expected to know SQL, Python, Excel, Power BI, and be ready with real-world logic👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HSnvtq
Enjoy Learning ✅️
❤1