SQL is one of the core languages used in data science, powering everything from quick data retrieval to complex deep dive analysis. Whether you're a seasoned data scientist or just starting out, mastering SQL can boost your ability to analyze data, create robust pipelines, and deliver actionable insights.
Let’s dive into a comprehensive guide on SQL for Data Science!
I have broken it down into three key sections to help you:
𝟭. 𝗦𝗤𝗟 𝗖𝗼𝗻𝗰𝗲𝗽𝘁𝘀:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.
𝟮. 𝗦𝗤𝗟 𝗶𝗻 𝗗𝗮𝘆-𝘁𝗼-𝗗𝗮𝘆 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.
𝟯. 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗦𝗤𝗟 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
Let’s dive into a comprehensive guide on SQL for Data Science!
I have broken it down into three key sections to help you:
𝟭. 𝗦𝗤𝗟 𝗖𝗼𝗻𝗰𝗲𝗽𝘁𝘀:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.
𝟮. 𝗦𝗤𝗟 𝗶𝗻 𝗗𝗮𝘆-𝘁𝗼-𝗗𝗮𝘆 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.
𝟯. 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗦𝗤𝗟 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
❤1
𝗧𝗼𝗽 𝟱 𝗪𝗲𝗯𝘀𝗶𝘁𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗝𝗮𝘃𝗮𝗦𝗰𝗿𝗶𝗽𝘁 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Learning JavaScript doesn’t have to be boring anymore!💫
If endless tutorials make your eyes glaze over, we’ve got just the thing — these super fun & interactive platforms turn learning JavaScript into a game👨💻
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3T4yYbP
Perfect for daily practice, weekend sprints, or anyone who learns better with hands-on interaction!9✅️
Learning JavaScript doesn’t have to be boring anymore!💫
If endless tutorials make your eyes glaze over, we’ve got just the thing — these super fun & interactive platforms turn learning JavaScript into a game👨💻
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3T4yYbP
Perfect for daily practice, weekend sprints, or anyone who learns better with hands-on interaction!9✅️
SQL Basics for Data Analysts
SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.
1️⃣ Understanding Databases & Tables
Databases store structured data in tables.
Tables contain rows (records) and columns (fields).
Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).
2️⃣ Basic SQL Commands
Let's start with some fundamental queries:
🔹 SELECT – Retrieve Data
🔹 WHERE – Filter Data
🔹 ORDER BY – Sort Data
🔹 LIMIT – Restrict Number of Results
🔹 DISTINCT – Remove Duplicates
Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.
You can find free SQL Resources here
👇👇
https://news.1rj.ru/str/mysqldata
Like this post if you want me to continue covering all the topics! 👍❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
#sql
SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.
1️⃣ Understanding Databases & Tables
Databases store structured data in tables.
Tables contain rows (records) and columns (fields).
Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).
2️⃣ Basic SQL Commands
Let's start with some fundamental queries:
🔹 SELECT – Retrieve Data
SELECT * FROM employees; -- Fetch all columns from 'employees' table SELECT name, salary FROM employees; -- Fetch specific columns
🔹 WHERE – Filter Data
SELECT * FROM employees WHERE department = 'Sales'; -- Filter by department SELECT * FROM employees WHERE salary > 50000; -- Filter by salary
🔹 ORDER BY – Sort Data
SELECT * FROM employees ORDER BY salary DESC; -- Sort by salary (highest first) SELECT name, hire_date FROM employees ORDER BY hire_date ASC; -- Sort by hire date (oldest first)
🔹 LIMIT – Restrict Number of Results
SELECT * FROM employees LIMIT 5; -- Fetch only 5 rows SELECT * FROM employees WHERE department = 'HR' LIMIT 10; -- Fetch first 10 HR employees
🔹 DISTINCT – Remove Duplicates
SELECT DISTINCT department FROM employees; -- Show unique departments
Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.
You can find free SQL Resources here
👇👇
https://news.1rj.ru/str/mysqldata
Like this post if you want me to continue covering all the topics! 👍❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
#sql
❤1
𝟱 𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 + 𝗟𝗶𝗻𝗸𝗲𝗱𝗜𝗻 𝗖𝗮𝗿𝗲𝗲𝗿 𝗘𝘀𝘀𝗲𝗻𝘁𝗶𝗮𝗹 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲😍
Ready to upgrade your career without spending a dime?✨️
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!📲📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications📜✅️
Ready to upgrade your career without spending a dime?✨️
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!📲📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications📜✅️
Data Analyst Interview Questions with Answers
Q1: How would you handle real-time data streaming for analyzing user listening patterns?
Ans: I'd use platforms like Apache Kafka for real-time data ingestion. Using Python, I'd process this stream to identify real-time patterns and store aggregated data for further analysis.
Q2: Describe a situation where you had to use time series analysis to forecast a trend.
Ans: I analyzed monthly active users to forecast future growth. Using Python's statsmodels, I applied ARIMA modeling to the time series data and provided a forecast for the next six months.
Q3: How would you segment and analyze user behavior based on their music preferences?
Ans: I'd cluster users based on their listening history using unsupervised machine learning techniques like K-means clustering. This would help in creating personalized playlists or recommendations.
Q4: How do you handle missing or incomplete data in user listening logs?
Ans: I'd use imputation methods based on the nature of the missing data. For instance, if a user's listening time is missing, I might impute it based on their average listening time or use collaborative filtering methods to estimate it based on similar users.
Q1: How would you handle real-time data streaming for analyzing user listening patterns?
Ans: I'd use platforms like Apache Kafka for real-time data ingestion. Using Python, I'd process this stream to identify real-time patterns and store aggregated data for further analysis.
Q2: Describe a situation where you had to use time series analysis to forecast a trend.
Ans: I analyzed monthly active users to forecast future growth. Using Python's statsmodels, I applied ARIMA modeling to the time series data and provided a forecast for the next six months.
Q3: How would you segment and analyze user behavior based on their music preferences?
Ans: I'd cluster users based on their listening history using unsupervised machine learning techniques like K-means clustering. This would help in creating personalized playlists or recommendations.
Q4: How do you handle missing or incomplete data in user listening logs?
Ans: I'd use imputation methods based on the nature of the missing data. For instance, if a user's listening time is missing, I might impute it based on their average listening time or use collaborative filtering methods to estimate it based on similar users.
❤2
𝗧𝗼𝗽 𝟲 𝗙𝗥𝗘𝗘 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 𝗣𝗹𝗮𝘆𝗹𝗶𝘀𝘁𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗦𝗤𝗟 𝗳𝗿𝗼𝗺 𝗦𝗰𝗿𝗮𝘁𝗰𝗵 (𝗣𝗲𝗿𝗳𝗲𝗰𝘁 𝗳𝗼𝗿 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀)😍
Want to master SQL without spending a rupee?💰
You don’t need premium subnoscriptions or paid courses — these free YouTube playlists are all you need to understand databases, write queries, and even crack job interviews with confidence👨🎓📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HREv30
Hit play and grow at your own pace!
✅️
Want to master SQL without spending a rupee?💰
You don’t need premium subnoscriptions or paid courses — these free YouTube playlists are all you need to understand databases, write queries, and even crack job interviews with confidence👨🎓📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HREv30
Hit play and grow at your own pace!
✅️
❤1
Core data science concepts you should know:
🔢 1. Statistics & Probability
Denoscriptive statistics: Mean, median, mode, standard deviation, variance
Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA
Probability distributions: Normal, Binomial, Poisson, Uniform
Bayes' Theorem
Central Limit Theorem
📊 2. Data Wrangling & Cleaning
Handling missing values
Outlier detection and treatment
Data transformation (scaling, encoding, normalization)
Feature engineering
Dealing with imbalanced data
📈 3. Exploratory Data Analysis (EDA)
Univariate, bivariate, and multivariate analysis
Correlation and covariance
Data visualization tools: Matplotlib, Seaborn, Plotly
Insights generation through visual storytelling
🤖 4. Machine Learning Fundamentals
Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN
Unsupervised Learning: K-means, hierarchical clustering, PCA
Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC
Cross-validation and overfitting/underfitting
Bias-variance tradeoff
🧠 5. Deep Learning (Basics)
Neural networks: Perceptron, MLP
Activation functions (ReLU, Sigmoid, Tanh)
Backpropagation
Gradient descent and learning rate
CNNs and RNNs (intro level)
🗃️ 6. Data Structures & Algorithms (DSA)
Arrays, lists, dictionaries, sets
Sorting and searching algorithms
Time and space complexity (Big-O notation)
Common problems: string manipulation, matrix operations, recursion
💾 7. SQL & Databases
SELECT, WHERE, GROUP BY, HAVING
JOINS (inner, left, right, full)
Subqueries and CTEs
Window functions
Indexing and normalization
📦 8. Tools & Libraries
Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch
R: dplyr, ggplot2, caret
Jupyter Notebooks for experimentation
Git and GitHub for version control
🧪 9. A/B Testing & Experimentation
Control vs. treatment group
Hypothesis formulation
Significance level, p-value interpretation
Power analysis
🌐 10. Business Acumen & Storytelling
Translating data insights into business value
Crafting narratives with data
Building dashboards (Power BI, Tableau)
Knowing KPIs and business metrics
React ❤️ for more
🔢 1. Statistics & Probability
Denoscriptive statistics: Mean, median, mode, standard deviation, variance
Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA
Probability distributions: Normal, Binomial, Poisson, Uniform
Bayes' Theorem
Central Limit Theorem
📊 2. Data Wrangling & Cleaning
Handling missing values
Outlier detection and treatment
Data transformation (scaling, encoding, normalization)
Feature engineering
Dealing with imbalanced data
📈 3. Exploratory Data Analysis (EDA)
Univariate, bivariate, and multivariate analysis
Correlation and covariance
Data visualization tools: Matplotlib, Seaborn, Plotly
Insights generation through visual storytelling
🤖 4. Machine Learning Fundamentals
Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN
Unsupervised Learning: K-means, hierarchical clustering, PCA
Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC
Cross-validation and overfitting/underfitting
Bias-variance tradeoff
🧠 5. Deep Learning (Basics)
Neural networks: Perceptron, MLP
Activation functions (ReLU, Sigmoid, Tanh)
Backpropagation
Gradient descent and learning rate
CNNs and RNNs (intro level)
🗃️ 6. Data Structures & Algorithms (DSA)
Arrays, lists, dictionaries, sets
Sorting and searching algorithms
Time and space complexity (Big-O notation)
Common problems: string manipulation, matrix operations, recursion
💾 7. SQL & Databases
SELECT, WHERE, GROUP BY, HAVING
JOINS (inner, left, right, full)
Subqueries and CTEs
Window functions
Indexing and normalization
📦 8. Tools & Libraries
Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch
R: dplyr, ggplot2, caret
Jupyter Notebooks for experimentation
Git and GitHub for version control
🧪 9. A/B Testing & Experimentation
Control vs. treatment group
Hypothesis formulation
Significance level, p-value interpretation
Power analysis
🌐 10. Business Acumen & Storytelling
Translating data insights into business value
Crafting narratives with data
Building dashboards (Power BI, Tableau)
Knowing KPIs and business metrics
React ❤️ for more
❤2
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗙𝗥𝗘𝗘 𝗗𝗲𝗺𝗼 𝗠𝗮𝘀𝘁𝗲𝗿𝗰𝗹𝗮𝘀𝘀 𝗜𝗻 𝗣𝘂𝗻𝗲 😍
📊 “Data Analyst” is one of the hottest careers in tech — and guess what? NO coding needed!
Learn Data Analytics in Pune with Hands-on Training, Industry Projects, and 100% Placement Assistance.
𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀 :-
- 100% Placement Assistance
- 500+ Hiring Partners
- Weekly Hiring Drives
𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:-
https://pdlink.in/45p4GrC
Location:- Acciojob Skill Centre ,Baner, Pune
📊 “Data Analyst” is one of the hottest careers in tech — and guess what? NO coding needed!
Learn Data Analytics in Pune with Hands-on Training, Industry Projects, and 100% Placement Assistance.
𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀 :-
- 100% Placement Assistance
- 500+ Hiring Partners
- Weekly Hiring Drives
𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:-
https://pdlink.in/45p4GrC
Location:- Acciojob Skill Centre ,Baner, Pune
❤1
Essential Topics to Master Data Analytics Interviews: 🚀
SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some ❤️ if you're ready to elevate your data analytics journey! 📊
ENJOY LEARNING 👍👍
SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some ❤️ if you're ready to elevate your data analytics journey! 📊
ENJOY LEARNING 👍👍
❤1
Forwarded from Data Analytics
𝟱 𝗙𝗥𝗘𝗘 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗳𝗼𝗿 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀 𝗯𝘆 𝗛𝗮𝗿𝘃𝗮𝗿𝗱, 𝗜𝗕𝗠, 𝗨𝗱𝗮𝗰𝗶𝘁𝘆 & 𝗠𝗼𝗿𝗲😍
Looking to learn Python from scratch—without spending a rupee? 💻
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion🔥👨🎓
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HNeyBQ
Kickstart your career✅️
Looking to learn Python from scratch—without spending a rupee? 💻
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion🔥👨🎓
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HNeyBQ
Kickstart your career✅️
Top 10 machine Learning algorithms
1. Linear Regression: Linear regression is a simple and commonly used algorithm for predicting a continuous target variable based on one or more input features. It assumes a linear relationship between the input variables and the output.
2. Logistic Regression: Logistic regression is used for binary classification problems where the target variable has two classes. It estimates the probability that a given input belongs to a particular class.
3. Decision Trees: Decision trees are a popular algorithm for both classification and regression tasks. They partition the feature space into regions based on the input variables and make predictions by following a tree-like structure.
4. Random Forest: Random forest is an ensemble learning method that combines multiple decision trees to improve prediction accuracy. It reduces overfitting and provides robust predictions by averaging the results of individual trees.
5. Support Vector Machines (SVM): SVM is a powerful algorithm for both classification and regression tasks. It finds the optimal hyperplane that separates different classes in the feature space, maximizing the margin between classes.
6. K-Nearest Neighbors (KNN): KNN is a simple and intuitive algorithm for classification and regression tasks. It makes predictions based on the similarity of input data points to their k nearest neighbors in the training set.
7. Naive Bayes: Naive Bayes is a probabilistic algorithm based on Bayes' theorem that is commonly used for classification tasks. It assumes that the features are conditionally independent given the class label.
8. Neural Networks: Neural networks are a versatile and powerful class of algorithms inspired by the human brain. They consist of interconnected layers of neurons that learn complex patterns in the data through training.
9. Gradient Boosting Machines (GBM): GBM is an ensemble learning method that builds a series of weak learners sequentially to improve prediction accuracy. It combines multiple decision trees in a boosting framework to minimize prediction errors.
10. Principal Component Analysis (PCA): PCA is a dimensionality reduction technique that transforms high-dimensional data into a lower-dimensional space while preserving as much variance as possible. It helps in visualizing and understanding the underlying structure of the data.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
1. Linear Regression: Linear regression is a simple and commonly used algorithm for predicting a continuous target variable based on one or more input features. It assumes a linear relationship between the input variables and the output.
2. Logistic Regression: Logistic regression is used for binary classification problems where the target variable has two classes. It estimates the probability that a given input belongs to a particular class.
3. Decision Trees: Decision trees are a popular algorithm for both classification and regression tasks. They partition the feature space into regions based on the input variables and make predictions by following a tree-like structure.
4. Random Forest: Random forest is an ensemble learning method that combines multiple decision trees to improve prediction accuracy. It reduces overfitting and provides robust predictions by averaging the results of individual trees.
5. Support Vector Machines (SVM): SVM is a powerful algorithm for both classification and regression tasks. It finds the optimal hyperplane that separates different classes in the feature space, maximizing the margin between classes.
6. K-Nearest Neighbors (KNN): KNN is a simple and intuitive algorithm for classification and regression tasks. It makes predictions based on the similarity of input data points to their k nearest neighbors in the training set.
7. Naive Bayes: Naive Bayes is a probabilistic algorithm based on Bayes' theorem that is commonly used for classification tasks. It assumes that the features are conditionally independent given the class label.
8. Neural Networks: Neural networks are a versatile and powerful class of algorithms inspired by the human brain. They consist of interconnected layers of neurons that learn complex patterns in the data through training.
9. Gradient Boosting Machines (GBM): GBM is an ensemble learning method that builds a series of weak learners sequentially to improve prediction accuracy. It combines multiple decision trees in a boosting framework to minimize prediction errors.
10. Principal Component Analysis (PCA): PCA is a dimensionality reduction technique that transforms high-dimensional data into a lower-dimensional space while preserving as much variance as possible. It helps in visualizing and understanding the underlying structure of the data.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
❤2
🎓 𝗨𝗽𝗴𝗿𝗮𝗱𝗲 𝗬𝗼𝘂𝗿 𝗦𝗸𝗶𝗹𝗹𝘀 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝗜𝗻 𝟮𝟬𝟮𝟱
Access 1000+ free courses in top domains like:
🔹 AI & GenAI
🔹 Data Science
🔹 Digital Marketing
🔹 UI/UX Design & more
✅ Learn from top faculty & industry experts
✅ Get industry-recognized certificates
✅ Boost your CV with valuable credentials
📌 Start learning today — it’s 100% free!
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4dJ27Ta
Enroll For FREE & Get Certified 🎓
Access 1000+ free courses in top domains like:
🔹 AI & GenAI
🔹 Data Science
🔹 Digital Marketing
🔹 UI/UX Design & more
✅ Learn from top faculty & industry experts
✅ Get industry-recognized certificates
✅ Boost your CV with valuable credentials
📌 Start learning today — it’s 100% free!
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4dJ27Ta
Enroll For FREE & Get Certified 🎓
❤2
1. What is the difference between the RANK() and DENSE_RANK() functions?
The RANK() function in the result set defines the rank of each row within your ordered partition. If both rows have the same rank, the next number in the ranking will be the previous rank plus a number of duplicates. If we have three records at rank 4, for example, the next level indicated is 7. The DENSE_RANK() function assigns a distinct rank to each row within a partition based on the provided column value, with no gaps. If we have three records at rank 4, for example, the next level indicated is 5.
2. Explain One-hot encoding and Label Encoding. How do they affect the dimensionality of the given dataset?
One-hot encoding is the representation of categorical variables as binary vectors. Label Encoding is converting labels/words into numeric form. Using one-hot encoding increases the dimensionality of the data set. Label encoding doesn’t affect the dimensionality of the data set. One-hot encoding creates a new variable for each level in the variable whereas, in Label encoding, the levels of a variable get encoded as 1 and 0.
3. What is the shortcut to add a filter to a table in EXCEL?
The filter mechanism is used when you want to display only specific data from the entire dataset. By doing so, there is no change being made to the data. The shortcut to add a filter to a table is Ctrl+Shift+L.
4. What is DAX in Power BI?
DAX stands for Data Analysis Expressions. It's a collection of functions, operators, and constants used in formulas to calculate and return values. In other words, it helps you create new info from data you already have.
5. Define shelves and sets in Tableau?
Shelves: Every worksheet in Tableau will have shelves such as columns, rows, marks, filters, pages, and more. By placing filters on shelves we can build our own visualization structure. We can control the marks by including or excluding data.
Sets: The sets are used to compute a condition on which the dataset will be prepared. Data will be grouped together based on a condition. Fields which is responsible for grouping are known assets. For example – students having grades of more than 70%.
The RANK() function in the result set defines the rank of each row within your ordered partition. If both rows have the same rank, the next number in the ranking will be the previous rank plus a number of duplicates. If we have three records at rank 4, for example, the next level indicated is 7. The DENSE_RANK() function assigns a distinct rank to each row within a partition based on the provided column value, with no gaps. If we have three records at rank 4, for example, the next level indicated is 5.
2. Explain One-hot encoding and Label Encoding. How do they affect the dimensionality of the given dataset?
One-hot encoding is the representation of categorical variables as binary vectors. Label Encoding is converting labels/words into numeric form. Using one-hot encoding increases the dimensionality of the data set. Label encoding doesn’t affect the dimensionality of the data set. One-hot encoding creates a new variable for each level in the variable whereas, in Label encoding, the levels of a variable get encoded as 1 and 0.
3. What is the shortcut to add a filter to a table in EXCEL?
The filter mechanism is used when you want to display only specific data from the entire dataset. By doing so, there is no change being made to the data. The shortcut to add a filter to a table is Ctrl+Shift+L.
4. What is DAX in Power BI?
DAX stands for Data Analysis Expressions. It's a collection of functions, operators, and constants used in formulas to calculate and return values. In other words, it helps you create new info from data you already have.
5. Define shelves and sets in Tableau?
Shelves: Every worksheet in Tableau will have shelves such as columns, rows, marks, filters, pages, and more. By placing filters on shelves we can build our own visualization structure. We can control the marks by including or excluding data.
Sets: The sets are used to compute a condition on which the dataset will be prepared. Data will be grouped together based on a condition. Fields which is responsible for grouping are known assets. For example – students having grades of more than 70%.
❤2
Forwarded from SQL Programming Resources
𝟭𝟬 𝗥𝗲𝗮𝗹 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 & 𝗛𝗼𝘄 𝘁𝗼 𝗔𝗻𝘀𝘄𝗲𝗿 𝗧𝗵𝗲𝗺 𝗟𝗶𝗸𝗲 𝗮 𝗣𝗿𝗼😍
💼 Data Analytics interviews can feel overwhelming ✨️
You’re expected to know SQL, Python, Excel, Power BI, and be ready with real-world logic👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HSnvtq
Enjoy Learning ✅️
💼 Data Analytics interviews can feel overwhelming ✨️
You’re expected to know SQL, Python, Excel, Power BI, and be ready with real-world logic👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HSnvtq
Enjoy Learning ✅️
❤1
𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 - 𝗘𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘😍
Industry-approved Certifications to enhance employability
𝗔𝗜 & 𝗠𝗟 :- https://pdlink.in/4nwV054
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :-https://pdlink.in/4l3nFx0
𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 :- https://pdlink.in/4lteAgN
𝗖𝘆𝗯𝗲𝗿 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 :- https://pdlink.in/3ZLHHmW
𝗢𝘁𝗵𝗲𝗿 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 :-https://pdlink.in/3G5G9O4
𝗠𝗼𝗰𝗸 𝗔𝘀𝘀𝗲𝘀𝘀𝗺𝗲𝗻𝘁:- https://pdlink.in/4kan6A9
Get the Govt. of India Incentives on course completion🎓
Industry-approved Certifications to enhance employability
𝗔𝗜 & 𝗠𝗟 :- https://pdlink.in/4nwV054
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :-https://pdlink.in/4l3nFx0
𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 :- https://pdlink.in/4lteAgN
𝗖𝘆𝗯𝗲𝗿 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 :- https://pdlink.in/3ZLHHmW
𝗢𝘁𝗵𝗲𝗿 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 :-https://pdlink.in/3G5G9O4
𝗠𝗼𝗰𝗸 𝗔𝘀𝘀𝗲𝘀𝘀𝗺𝗲𝗻𝘁:- https://pdlink.in/4kan6A9
Get the Govt. of India Incentives on course completion🎓
Top 10 important data science concepts
1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.
2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.
3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.
4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.
6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.
7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.
8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.
9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.
10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.
2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.
3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.
4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.
6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.
7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.
8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.
9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.
10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
❤2
𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗦𝗤𝗟 𝗖𝗮𝗻 𝗕𝗲 𝗙𝘂𝗻! 𝟰 𝗜𝗻𝘁𝗲𝗿𝗮𝗰𝘁𝗶𝘃𝗲 𝗣𝗹𝗮𝘁𝗳𝗼𝗿𝗺𝘀 𝗧𝗵𝗮𝘁 𝗙𝗲𝗲𝗹 𝗟𝗶𝗸𝗲 𝗮 𝗚𝗮𝗺𝗲😍
Think SQL is all about dry syntax and boring tutorials? Think again.🤔
These 4 gamified SQL websites turn learning into an adventure — from solving murder mysteries to exploring virtual islands, you’ll write real SQL queries while cracking clues and completing missions📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and fun✅️
Think SQL is all about dry syntax and boring tutorials? Think again.🤔
These 4 gamified SQL websites turn learning into an adventure — from solving murder mysteries to exploring virtual islands, you’ll write real SQL queries while cracking clues and completing missions📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and fun✅️
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗣𝗿𝗼𝗴𝗿𝗮𝗺😍
✅ Learn essential skills: Excel, SQL, Power BI, Python & more
✅ Gain industry-recognized certification
✅ Get government incentives post-completion
🎓 Boost Your Career with Data Analytics – 100% Free!
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4l3nFx0
Enroll For FREE & Get Certified 🎓
✅ Learn essential skills: Excel, SQL, Power BI, Python & more
✅ Gain industry-recognized certification
✅ Get government incentives post-completion
🎓 Boost Your Career with Data Analytics – 100% Free!
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4l3nFx0
Enroll For FREE & Get Certified 🎓
❤1
Artificial intelligence can change your career by 180 degrees! 📌
Here's how you can start with AI engineering with zero experience!
The simplest definition of artificial intelligence|
Artificial intelligence (AI) is a part of computer science that creates smart systems to solve problems usually needing human intelligence.
AI includes tasks like recognizing objects and patterns, understanding voices, making predictions, and more.
Step 1: Master the prerequisites
Basics of programming
Probability and statistics essentials
Data structures
Data analysis essentials
Step 2: Get into machine learning and deep learning
Basics of data science, an intersection field
Feature engineering and machine learning
Neural networks and deep learning
Scikit-learn for machine learning along with Numpy, Pandas and matplotlib
TensorFlow, Keras and PyTorch for deep learning
Step 3: Exploring Generative Adversarial Networks (GANs)
Learn GAN fundamentals: Understand the theory behind GANs, including how the generator and discriminator work together to produce realistic data.
Hands-on projects: Build and train simple GANs using PyTorch or TensorFlow to generate images, enhance resolution, or perform style transfer.
Step 4: Get into Transformers architecture
Grasp the basics: Study the Transformer architecture's key concepts, including attention mechanisms, positional encodings, and the encoder-decoder structure.
Implementations: Use libraries like Hugging Face’s Transformers to experiment with different Transformer models, such as GPT and BERT, on NLP tasks.
Step 5: Working with Pre-trained Large Language Models
Utilize existing models: Learn how to leverage pre-trained models from libraries like Hugging Face to perform tasks like text generation, translation, and sentiment analysis.
Fine-tuning techniques: Explore strategies for fine-tuning these models on domain-specific datasets to improve performance and relevance.
Step 6: Introduction to LangChain
Understand LangChain: Familiarize yourself with LangChain, a framework designed to build applications that combine language models with external knowledge and capabilities.
Build applications: Use LangChain to develop applications that interactively use language models to process and generate information based on user queries or tasks.
Step 7: Leveraging Vector Databases
Basics of vector databases: Understand what vector databases are and why they are crucial for managing high-dimensional data typically used in AI models.
Tools and technologies: Learn to use vector databases like Milvus, Pinecone, or Weaviate, which are optimized for fast similarity search and efficient handling of vector embeddings.
Practical application: Integrate vector databases into your projects for enhanced search functionalities
Step 8: Exploration of Retrieval-Augmented Generation (RAG)
Learn the RAG approach: Understand how RAG models combine the power of retrieval (extracting information from a large database) with generative models to enhance the quality and relevance of the outputs.
Practical applications: Study case studies or research papers that showcase the use of RAG in real-world applications.
Step 9: Deployment of AI Projects
Deployment tools: Learn to use tools like Docker for containerization, Kubernetes for orchestration, and cloud services (AWS, Azure, Google Cloud) for deploying models.
Monitoring and maintenance: Understand the importance of monitoring AI systems post-deployment and how to use tools like Prometheus, Grafana, and Elastic Stack for performance tracking and logging.
Step 10: Keep building
Implement Projects and Gain Practical Experience
Work on diverse projects: Apply your knowledge to solve problems across different domains using AI, such as natural language processing, computer vision, and speech recognition.
Contribute to open-source: Participate in AI projects and contribute to open-source communities to gain experience and collaborate with others.
Hope this helps you ☺️
Here's how you can start with AI engineering with zero experience!
The simplest definition of artificial intelligence|
Artificial intelligence (AI) is a part of computer science that creates smart systems to solve problems usually needing human intelligence.
AI includes tasks like recognizing objects and patterns, understanding voices, making predictions, and more.
Step 1: Master the prerequisites
Basics of programming
Probability and statistics essentials
Data structures
Data analysis essentials
Step 2: Get into machine learning and deep learning
Basics of data science, an intersection field
Feature engineering and machine learning
Neural networks and deep learning
Scikit-learn for machine learning along with Numpy, Pandas and matplotlib
TensorFlow, Keras and PyTorch for deep learning
Step 3: Exploring Generative Adversarial Networks (GANs)
Learn GAN fundamentals: Understand the theory behind GANs, including how the generator and discriminator work together to produce realistic data.
Hands-on projects: Build and train simple GANs using PyTorch or TensorFlow to generate images, enhance resolution, or perform style transfer.
Step 4: Get into Transformers architecture
Grasp the basics: Study the Transformer architecture's key concepts, including attention mechanisms, positional encodings, and the encoder-decoder structure.
Implementations: Use libraries like Hugging Face’s Transformers to experiment with different Transformer models, such as GPT and BERT, on NLP tasks.
Step 5: Working with Pre-trained Large Language Models
Utilize existing models: Learn how to leverage pre-trained models from libraries like Hugging Face to perform tasks like text generation, translation, and sentiment analysis.
Fine-tuning techniques: Explore strategies for fine-tuning these models on domain-specific datasets to improve performance and relevance.
Step 6: Introduction to LangChain
Understand LangChain: Familiarize yourself with LangChain, a framework designed to build applications that combine language models with external knowledge and capabilities.
Build applications: Use LangChain to develop applications that interactively use language models to process and generate information based on user queries or tasks.
Step 7: Leveraging Vector Databases
Basics of vector databases: Understand what vector databases are and why they are crucial for managing high-dimensional data typically used in AI models.
Tools and technologies: Learn to use vector databases like Milvus, Pinecone, or Weaviate, which are optimized for fast similarity search and efficient handling of vector embeddings.
Practical application: Integrate vector databases into your projects for enhanced search functionalities
Step 8: Exploration of Retrieval-Augmented Generation (RAG)
Learn the RAG approach: Understand how RAG models combine the power of retrieval (extracting information from a large database) with generative models to enhance the quality and relevance of the outputs.
Practical applications: Study case studies or research papers that showcase the use of RAG in real-world applications.
Step 9: Deployment of AI Projects
Deployment tools: Learn to use tools like Docker for containerization, Kubernetes for orchestration, and cloud services (AWS, Azure, Google Cloud) for deploying models.
Monitoring and maintenance: Understand the importance of monitoring AI systems post-deployment and how to use tools like Prometheus, Grafana, and Elastic Stack for performance tracking and logging.
Step 10: Keep building
Implement Projects and Gain Practical Experience
Work on diverse projects: Apply your knowledge to solve problems across different domains using AI, such as natural language processing, computer vision, and speech recognition.
Contribute to open-source: Participate in AI projects and contribute to open-source communities to gain experience and collaborate with others.
Hope this helps you ☺️
❤1
𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍
- Artificial Intelligence for Beginners
- Data Science for Beginners
- Machine Learning for Beginners
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified 🎓
- Artificial Intelligence for Beginners
- Data Science for Beginners
- Machine Learning for Beginners
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified 🎓
🧠 Technologies for Data Analysts!
📊 Data Manipulation & Analysis
▪️ Excel – Spreadsheet Data Analysis & Visualization
▪️ SQL – Structured Query Language for Data Extraction
▪️ Pandas (Python) – Data Analysis with DataFrames
▪️ NumPy (Python) – Numerical Computing for Large Datasets
▪️ Google Sheets – Online Collaboration for Data Analysis
📈 Data Visualization
▪️ Power BI – Business Intelligence & Dashboarding
▪️ Tableau – Interactive Data Visualization
▪️ Matplotlib (Python) – Plotting Graphs & Charts
▪️ Seaborn (Python) – Statistical Data Visualization
▪️ Google Data Studio – Free, Web-Based Visualization Tool
🔄 ETL (Extract, Transform, Load)
▪️ SQL Server Integration Services (SSIS) – Data Integration & ETL
▪️ Apache NiFi – Automating Data Flows
▪️ Talend – Data Integration for Cloud & On-premises
🧹 Data Cleaning & Preparation
▪️ OpenRefine – Clean & Transform Messy Data
▪️ Pandas Profiling (Python) – Data Profiling & Preprocessing
▪️ DataWrangler – Data Transformation Tool
📦 Data Storage & Databases
▪️ SQL – Relational Databases (MySQL, PostgreSQL, MS SQL)
▪️ NoSQL (MongoDB) – Flexible, Schema-less Data Storage
▪️ Google BigQuery – Scalable Cloud Data Warehousing
▪️ Redshift – Amazon’s Cloud Data Warehouse
⚙️ Data Automation
▪️ Alteryx – Data Blending & Advanced Analytics
▪️ Knime – Data Analytics & Reporting Automation
▪️ Zapier – Connect & Automate Data Workflows
📊 Advanced Analytics & Statistical Tools
▪️ R – Statistical Computing & Analysis
▪️ Python (SciPy, Statsmodels) – Statistical Modeling & Hypothesis Testing
▪️ SPSS – Statistical Software for Data Analysis
▪️ SAS – Advanced Analytics & Predictive Modeling
🌐 Collaboration & Reporting
▪️ Power BI Service – Online Sharing & Collaboration for Dashboards
▪️ Tableau Online – Cloud-Based Visualization & Sharing
▪️ Google Analytics – Web Traffic Data Insights
▪️ Trello / JIRA – Project & Task Management for Data Projects
Data-Driven Decisions with the Right Tools!
React ❤️ for more
📊 Data Manipulation & Analysis
▪️ Excel – Spreadsheet Data Analysis & Visualization
▪️ SQL – Structured Query Language for Data Extraction
▪️ Pandas (Python) – Data Analysis with DataFrames
▪️ NumPy (Python) – Numerical Computing for Large Datasets
▪️ Google Sheets – Online Collaboration for Data Analysis
📈 Data Visualization
▪️ Power BI – Business Intelligence & Dashboarding
▪️ Tableau – Interactive Data Visualization
▪️ Matplotlib (Python) – Plotting Graphs & Charts
▪️ Seaborn (Python) – Statistical Data Visualization
▪️ Google Data Studio – Free, Web-Based Visualization Tool
🔄 ETL (Extract, Transform, Load)
▪️ SQL Server Integration Services (SSIS) – Data Integration & ETL
▪️ Apache NiFi – Automating Data Flows
▪️ Talend – Data Integration for Cloud & On-premises
🧹 Data Cleaning & Preparation
▪️ OpenRefine – Clean & Transform Messy Data
▪️ Pandas Profiling (Python) – Data Profiling & Preprocessing
▪️ DataWrangler – Data Transformation Tool
📦 Data Storage & Databases
▪️ SQL – Relational Databases (MySQL, PostgreSQL, MS SQL)
▪️ NoSQL (MongoDB) – Flexible, Schema-less Data Storage
▪️ Google BigQuery – Scalable Cloud Data Warehousing
▪️ Redshift – Amazon’s Cloud Data Warehouse
⚙️ Data Automation
▪️ Alteryx – Data Blending & Advanced Analytics
▪️ Knime – Data Analytics & Reporting Automation
▪️ Zapier – Connect & Automate Data Workflows
📊 Advanced Analytics & Statistical Tools
▪️ R – Statistical Computing & Analysis
▪️ Python (SciPy, Statsmodels) – Statistical Modeling & Hypothesis Testing
▪️ SPSS – Statistical Software for Data Analysis
▪️ SAS – Advanced Analytics & Predictive Modeling
🌐 Collaboration & Reporting
▪️ Power BI Service – Online Sharing & Collaboration for Dashboards
▪️ Tableau Online – Cloud-Based Visualization & Sharing
▪️ Google Analytics – Web Traffic Data Insights
▪️ Trello / JIRA – Project & Task Management for Data Projects
Data-Driven Decisions with the Right Tools!
React ❤️ for more
❤2