Forwarded from Artificial Intelligence
𝟰 𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
These free, Microsoft-backed courses are a game-changer!
With these resources, you’ll gain the skills and confidence needed to shine in the data analytics world—all without spending a penny.
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4jpmI0I
Enroll For FREE & Get Certified🎓
These free, Microsoft-backed courses are a game-changer!
With these resources, you’ll gain the skills and confidence needed to shine in the data analytics world—all without spending a penny.
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4jpmI0I
Enroll For FREE & Get Certified🎓
👍1
Learning Python for data science can be a rewarding experience. Here are some steps you can follow to get started:
1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.
2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.
3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.
4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.
5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.
6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.
7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.
Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!
Please react 👍❤️ if you guys want me to share more of this content...
1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.
2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.
3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.
4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.
5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.
6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.
7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.
Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!
Please react 👍❤️ if you guys want me to share more of this content...
👍3❤2🔥1
Build your career in Data & AI!
I just signed up for Hack the Future: A Gen AI Sprint Powered by Data—a nationwide hackathon where you'll tackle real-world challenges using Data and AI. It’s a golden opportunity to work with industry experts, participate in hands-on workshops, and win exciting prizes.
Highly recommended for working professionals looking to upskill or transition into the AI/Data space.
If you're looking to level up your skills, network with like-minded folks, and boost your career, don't miss out!
Register now: https://gfgcdn.com/tu/UO5/
I just signed up for Hack the Future: A Gen AI Sprint Powered by Data—a nationwide hackathon where you'll tackle real-world challenges using Data and AI. It’s a golden opportunity to work with industry experts, participate in hands-on workshops, and win exciting prizes.
Highly recommended for working professionals looking to upskill or transition into the AI/Data space.
If you're looking to level up your skills, network with like-minded folks, and boost your career, don't miss out!
Register now: https://gfgcdn.com/tu/UO5/
👍4
𝗟𝗲𝗮𝗿𝗻 𝗣𝗼𝘄𝗲𝗿 𝗕𝗜 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 & 𝗘𝗹𝗲𝘃𝗮𝘁𝗲 𝗬𝗼𝘂𝗿 𝗗𝗮𝘀𝗵𝗯𝗼𝗮𝗿𝗱 𝗚𝗮𝗺𝗲!😍
Want to turn raw data into stunning visual stories?📊
Here are 6 FREE Power BI courses that’ll take you from beginner to pro—without spending a single rupee💰
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4cwsGL2
Enjoy Learning ✅️
Want to turn raw data into stunning visual stories?📊
Here are 6 FREE Power BI courses that’ll take you from beginner to pro—without spending a single rupee💰
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4cwsGL2
Enjoy Learning ✅️
👍1
𝗜𝗻𝗳𝗼𝘀𝘆𝘀 𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resume—at no cost.
Whether you’re a student, graduate, or working professional, this platform has something valuable for everyone.
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified 🎓
Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resume—at no cost.
Whether you’re a student, graduate, or working professional, this platform has something valuable for everyone.
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified 🎓
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://news.1rj.ru/str/sqlproject
ENJOY LEARNING 👍👍
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://news.1rj.ru/str/sqlproject
ENJOY LEARNING 👍👍
👍3
𝟱 𝗙𝗥𝗘𝗘 𝗧𝗲𝗰𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗙𝗿𝗼𝗺 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁, 𝗔𝗪𝗦, 𝗜𝗕𝗠, 𝗖𝗶𝘀𝗰𝗼, 𝗮𝗻𝗱 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱. 😍
- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/3E2wYNr
Enroll For FREE & Get Certified 🎓
- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/3E2wYNr
Enroll For FREE & Get Certified 🎓
👍1🔥1
Useful Telegram Channels for Free Learning 😄👇
Free Courses with Certificate
Web Development
Data Science & Machine Learning
Programming books
Python Free Courses
Data Analytics
Ethical Hacking & Cyber Security
English Speaking & Communication
Stock Marketing & Investment Banking
Excel
ChatGPT Hacks
SQL
Tableau & Power BI
Coding Projects
Data Science Projects
Jobs & Internship Opportunities
Coding Interviews
Udemy Free Courses with Certificate
Cryptocurrency & Bitcoin
Python Projects
Data Analyst Interview
Data Analyst Jobs
Python Interview
ChatGPT Hacks
ENJOY LEARNING 👍👍
Free Courses with Certificate
Web Development
Data Science & Machine Learning
Programming books
Python Free Courses
Data Analytics
Ethical Hacking & Cyber Security
English Speaking & Communication
Stock Marketing & Investment Banking
Excel
ChatGPT Hacks
SQL
Tableau & Power BI
Coding Projects
Data Science Projects
Jobs & Internship Opportunities
Coding Interviews
Udemy Free Courses with Certificate
Cryptocurrency & Bitcoin
Python Projects
Data Analyst Interview
Data Analyst Jobs
Python Interview
ChatGPT Hacks
ENJOY LEARNING 👍👍
👍3❤1
Forwarded from Generative AI
𝟯 𝗙𝗥𝗘𝗘 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝘃𝗲 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝟮𝟬𝟮𝟱😍
Taught by industry leaders (like Microsoft - 100% online and beginner-friendly
* Generative AI for Data Analysts
* Generative AI: Enhance Your Data Analytics Career
* Microsoft Generative AI for Data Analysis
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/3R7asWB
Enroll Now & Get Certified 🎓
Taught by industry leaders (like Microsoft - 100% online and beginner-friendly
* Generative AI for Data Analysts
* Generative AI: Enhance Your Data Analytics Career
* Microsoft Generative AI for Data Analysis
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/3R7asWB
Enroll Now & Get Certified 🎓
Here are 10 project ideas to work on for Data Analytics
1. Customer Churn Prediction: Predict customer churn for subnoscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.
And this is how you can work on
Here’s a compact list of free resources for working on data analytics projects:
1. Datasets
• Kaggle Datasets: Wide range of datasets and community discussions.
• UCI Machine Learning Repository: Great for educational datasets.
• Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
• YouTube: Channels like Data School and freeCodeCamp for tutorials.
• 365DataScience: Data Science & AI Related Courses
3. Tools
• Google Colab: Free Jupyter Notebooks for Python coding.
• Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
• Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
• Data Analytics on Medium: Project guides and tutorials.
ENJOY LEARNING ✅️✅️
#datascienceprojects
1. Customer Churn Prediction: Predict customer churn for subnoscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.
And this is how you can work on
Here’s a compact list of free resources for working on data analytics projects:
1. Datasets
• Kaggle Datasets: Wide range of datasets and community discussions.
• UCI Machine Learning Repository: Great for educational datasets.
• Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
• YouTube: Channels like Data School and freeCodeCamp for tutorials.
• 365DataScience: Data Science & AI Related Courses
3. Tools
• Google Colab: Free Jupyter Notebooks for Python coding.
• Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
• Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
• Data Analytics on Medium: Project guides and tutorials.
ENJOY LEARNING ✅️✅️
#datascienceprojects
❤4👍4
Emails Kaggle Data Sets.csv
1.3 GB
📦 Datasets Name: Emails Datasets
⚙ Format: CSV file
🔐 From: Kaggle
https://news.1rj.ru/str/DataPortfolio
⚙ Format: CSV file
🔐 From: Kaggle
https://news.1rj.ru/str/DataPortfolio
Best Alzheimer MRI dataset.zip
71.5 MB
📦 Datasets name: Alzheimer MRI dataset
⚙ Format: images files
🔐 From: Kaggle
⚙ Format: images files
🔐 From: Kaggle
Retinopathy-Diabetes Dataset.zip
365.1 MB
📦 Datasets name: Retinopathy & Diabetes Dataset
⚙ Format: images files
🔐 From: Kaggle
https://news.1rj.ru/str/DataPortfolio
⚙ Format: images files
🔐 From: Kaggle
https://news.1rj.ru/str/DataPortfolio
deep learning notes.pdf
19.1 MB
Deep Learning Notes
Data_Science_from_Scratch_First_Principles_with_Python_by_Joel_Grus.pdf
10.8 MB
Data Science from Scratch First Principles with Python by Joel Grus z lib
👍1
𝟰 𝗙𝗥𝗘𝗘 𝗕𝗲𝘀𝘁 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 𝗧𝗼 𝗟𝗲𝗮𝗿𝗻 𝗝𝗮𝘃𝗮 𝗘𝗮𝘀𝗶𝗹𝘆 😍
Level up your Java skills without getting overwhelmed
All of them are absolutely free, designed by experienced educators and top tech creators
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/3RvvP49
Enroll For FREE & Get Certified 🎓
Level up your Java skills without getting overwhelmed
All of them are absolutely free, designed by experienced educators and top tech creators
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/3RvvP49
Enroll For FREE & Get Certified 🎓
👍1
Top 5 Case Studies for Data Analytics: You Must Know Before Attending an Interview
1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.
2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.
3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.
4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.
5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.
Like if it helps 😄
1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.
2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.
3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.
4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.
5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.
Like if it helps 😄
👍1
𝟯 𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗟𝗲𝘃𝗲𝗹 𝗨𝗽 𝗬𝗼𝘂𝗿 𝗧𝗲𝗰𝗵 𝗦𝗸𝗶𝗹𝗹𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Want to build your tech career without breaking the bank?💰
These 3 completely free courses are all you need to begin your journey in programming and data analysis📊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3EtHnBI
Learn at your own pace, sharpen your skills, and showcase your progress on LinkedIn or your resume. Let’s dive in!✅️
Want to build your tech career without breaking the bank?💰
These 3 completely free courses are all you need to begin your journey in programming and data analysis📊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3EtHnBI
Learn at your own pace, sharpen your skills, and showcase your progress on LinkedIn or your resume. Let’s dive in!✅️
👍1
How to Reach Recruiters on LinkedIn (The Smart Way!) 💼✨
Looking for a job? Want to get noticed by recruiters?
Here’s how you can professionally reach out and actually get a response 👇
✅ 1. Polish Your Profile First
Your profile is your first impression — make it count!
📌 Use a professional photo
📌 Write a clear, concise headline
📌 Highlight your key skills & experience
📌 Add a compelling “About” section
✅ 2. Search for the Right Recruiters
Use keywords like:
🔹 “Recruiter + [Company Name]”
🔹 “Talent Acquisition + [Domain/Role]”
This helps you connect with recruiters relevant to your field.
✅ 3. Send a Personal Connection Request 📨
Don’t just hit Connect — always add a note! Here's a simple format:
“Hi [Name], I admire the work your team is doing at [Company]. I’m exploring opportunities in [role/domain] and would love to connect with you. Thanks in advance!”
✅ 4. Engage Before You Message
Like their posts. Leave thoughtful comments. Show up on their radar before starting a conversation. 👀
✅ 5. Don’t Immediately Ask for a Job ❌
Build a connection first. Instead, ask: 💬 “Could you share what qualities you usually look for in [role] candidates?”
This shows initiative without pressure.
✅ 6. Follow Up Respectfully 🔁
If you don’t get a response, follow up once after a few days.
Keep it short, friendly, and respectful. Patience pays.
✅ 7. Be Active & Consistent 📣
Post updates, share your learnings, and interact with industry content.
Recruiters often notice candidates who are visible and engaged!
💡 Remember: LinkedIn is not just about job hunting – it's about building professional relationships.
Stay genuine. Stay professional. Stay consistent. 🌟
✨ You never know which message could change your career path.
Looking for a job? Want to get noticed by recruiters?
Here’s how you can professionally reach out and actually get a response 👇
✅ 1. Polish Your Profile First
Your profile is your first impression — make it count!
📌 Use a professional photo
📌 Write a clear, concise headline
📌 Highlight your key skills & experience
📌 Add a compelling “About” section
✅ 2. Search for the Right Recruiters
Use keywords like:
🔹 “Recruiter + [Company Name]”
🔹 “Talent Acquisition + [Domain/Role]”
This helps you connect with recruiters relevant to your field.
✅ 3. Send a Personal Connection Request 📨
Don’t just hit Connect — always add a note! Here's a simple format:
“Hi [Name], I admire the work your team is doing at [Company]. I’m exploring opportunities in [role/domain] and would love to connect with you. Thanks in advance!”
✅ 4. Engage Before You Message
Like their posts. Leave thoughtful comments. Show up on their radar before starting a conversation. 👀
✅ 5. Don’t Immediately Ask for a Job ❌
Build a connection first. Instead, ask: 💬 “Could you share what qualities you usually look for in [role] candidates?”
This shows initiative without pressure.
✅ 6. Follow Up Respectfully 🔁
If you don’t get a response, follow up once after a few days.
Keep it short, friendly, and respectful. Patience pays.
✅ 7. Be Active & Consistent 📣
Post updates, share your learnings, and interact with industry content.
Recruiters often notice candidates who are visible and engaged!
💡 Remember: LinkedIn is not just about job hunting – it's about building professional relationships.
Stay genuine. Stay professional. Stay consistent. 🌟
✨ You never know which message could change your career path.
👍4