Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence – Telegram
Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.1K subscribers
282 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
🔒 Dataset Name: Spotify Songs Album

🔍 This dataset provides concise details about music tracks and their performance across various platforms. It includes essential information like track name, artist(s), release date, and presence in popular playlists and charts on platforms like Spotify, Apple Music, Deezer, and Shazam. Additionally, it features metrics such as BPM, key, mode, danceability, valence, energy, acousticness, instrumentalness, and liveness_speechiness, which offer insights into the musical characteristics and appeal of each track.

💡 With this data, analysts can evaluate the popularity, genre, and audience engagement of different music offerings across multiple streaming services.

🤌 From: Kaggle

🤖 Size: 47.1 kB
👍52
🔒 Dataset Name: Employee Data Analysis

🔍 Unlocking Insights for a Thriving Workplace

🚀 Our extensive collection of datasets provides a deep dive into different aspects of employee engagement and organizational dynamics.

💡 Our extensive collection of datasets provides a deep dive into different aspects of employee engagement and organizational dynamics.

🤌 From: Kaggle

🤖 Size: 120 kB
5👍4
cryptos historical data.zip
26.5 MB
Dataset Name: top 1000 cryptos historical data ( Daily updates )
Instagram fake spammer genuine accounts.zip
6.8 KB
Dataset Name: Instagram fake spammer genuine accounts
    
👍73
Don't forget to check these 10 SQL projects with corresponding datasets that you could use to practice your SQL skills:

1. Analysis of Sales Data:

(https://www.kaggle.com/kyanyoga/sample-sales-data)

2. HR Analytics:

(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset)

3. Social Media Analytics:

(https://www.kaggle.com/datasets/ramjasmaurya/top-1000-social-media-channels)

4. Financial Data Analysis:

(https://www.kaggle.com/datasets/nitindatta/finance-data)

5. Healthcare Data Analysis:

(https://www.kaggle.com/cdc/mortality)

6. Customer Relationship Management:

(https://www.kaggle.com/pankajjsh06/ibm-watson-marketing-customer-value-data)

7. Web Analytics:

(https://www.kaggle.com/zynicide/wine-reviews)

8. E-commerce Analysis:

(https://www.kaggle.com/olistbr/brazilian-ecommerce)

9. Supply Chain Management:

(https://www.kaggle.com/datasets/harshsingh2209/supply-chain-analysis)

10. Inventory Management:

(https://www.kaggle.com/datasets?search=inventory+management)

Share this channel with your friends 🤝🤩

Join for more -> https://news.1rj.ru/str/addlist/ID95piZJZa0wYzk5

ENJOY LEARNING 👍👍
👍83
The key to starting your data analysis career:

It's not your education
It's not your experience

It's how you apply these principles:

1. Learn the job through "doing"
2. Build a portfolio
3. Make yourself known

No one starts an expert, but everyone can become one.

If you're looking for a career in data analysis, start by:

⟶ Watching videos
⟶ Reading experts advice
⟶ Doing internships
⟶ Building a portfolio
⟶ Learning from seniors

You'll be amazed at how fast you'll learn and how quickly you'll become an expert.

So, start today and let the data analysis career begin
👍84
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science

Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.

1. Basic python and statistics

Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset

2. Advanced Statistics

Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

3. Supervised Learning

a) Regression Problems

How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview

b) Classification problems

Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking

4. Some helpful Data science projects for beginners

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

https://www.kaggle.com/c/digit-recognizer

https://www.kaggle.com/c/titanic

5. Intermediate Level Data science Projects

Black Friday Data : https://www.kaggle.com/sdolezel/black-friday

Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones

Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset

Million Song Data : https://www.kaggle.com/c/msdchallenge

Census Income Data : https://www.kaggle.com/c/census-income/data

Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset

Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2

Share with credits: https://news.1rj.ru/str/sqlproject

ENJOY LEARNING 👍👍
👍114
𝐒𝐐𝐋 𝐂𝐚𝐬𝐞 𝐒𝐭𝐮𝐝𝐢𝐞𝐬 𝐟𝐨𝐫 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰:

Join for more: https://news.1rj.ru/str/sqlanalyst

1. Danny’s Diner:
Restaurant analytics to understand the customer orders pattern.
Link: https://8weeksqlchallenge.com/case-study-1/

2. Pizza Runner
Pizza shop analytics to optimize the efficiency of the operation
Link: https://8weeksqlchallenge.com/case-study-2/

3. Foodie Fie
Subnoscription-based food content platform
Link: https://lnkd.in/gzB39qAT

4. Data Bank: That’s money
Analytics based on customer activities with the digital bank
Link: https://lnkd.in/gH8pKPyv

5. Data Mart: Fresh is Best
Analytics on Online supermarket
Link: https://lnkd.in/gC5bkcDf

6. Clique Bait: Attention capturing
Analytics on the seafood industry
Link: https://lnkd.in/ggP4JiYG

7. Balanced Tree: Clothing Company
Analytics on the sales performance of clothing store
Link: https://8weeksqlchallenge.com/case-study-7

8. Fresh segments: Extract maximum value
Analytics on online advertising
Link: https://8weeksqlchallenge.com/case-study-8
👍54
Creating a data science portfolio is a great way to showcase your skills and experience to potential employers. Here are some steps to help you create a strong data science portfolio:

1. Choose relevant projects: Select a few data science projects that demonstrate your skills and interests. These projects can be from your previous work experience, personal projects, or online competitions.

2. Clean and organize your code: Make sure your code is well-documented, organized, and easy to understand. Use comments to explain your thought process and the steps you took in your analysis.

3. Include a variety of projects: Try to include a mix of projects that showcase different aspects of data science, such as data cleaning, exploratory data analysis, machine learning, and data visualization.

4. Create visualizations: Data visualizations can help make your portfolio more engaging and easier to understand. Use tools like Matplotlib, Seaborn, or Tableau to create visually appealing charts and graphs.

5. Write project summaries: For each project, provide a brief summary of the problem you were trying to solve, the dataset you used, the methods you applied, and the results you obtained. Include any insights or recommendations that came out of your analysis.

6. Showcase your technical skills: Highlight the programming languages, libraries, and tools you used in each project. Mention any specific techniques or algorithms you implemented.

7. Link to your code and data: Provide links to your code repositories (e.g., GitHub) and any datasets you used in your projects. This allows potential employers to review your work in more detail.

8. Keep it updated: Regularly update your portfolio with new projects and skills as you gain more experience in data science. This will show that you are actively engaged in the field and continuously improving your skills.

So, start today and let the data analysis career begin
👍74
Sites to Find Datasets

Below are sites I've found free and public datasets.

Datahub - This site covers a wide range of topics from climate change to entertainment, but it mainly focuses on economic and business data.
Dataset Search - You're able to use Google to search for datasets. It's great if you have a particular topic in mind.
Kaggle - It has variety of free datasets provided by users from everything to arts & entertainment to social science data.
Data Gov - Public data from the US government from everything from crime to healthcare.
Maven Analytics Data Playground - Datasets that are hand picked by Maven's instructors. These datasets can be more fun like analyzing the Harry Potter movies noscripts to more business focused like analyzing sales of a pizza place.
Awesome Public Datasets - A list of topic focused public data sources that are high quality. These are collected from blogs, answers, and user responses.
Datacamp Datasets - These datasets are from a variety of fields from real estate to retail. All of the datasets have the data and packages needed.
NASA Data - Has open-data provided to the public from NASA. The dataset pages only hold the metadata and the actual data may be on another NASA site. There will be links to the data in these other locations.
Dataportfolio - Telegram Channel with Free Datasets
Google BigQuery - It's free to sign up and you can practice with plenty of free datasets.
👍154
Creating a data science portfolio is a great way to showcase your skills and experience to potential employers. Here are some steps to help you create a strong data science portfolio:

1. Choose relevant projects: Select a few data science projects that demonstrate your skills and interests. These projects can be from your previous work experience, personal projects, or online competitions.

2. Clean and organize your code: Make sure your code is well-documented, organized, and easy to understand. Use comments to explain your thought process and the steps you took in your analysis.

3. Include a variety of projects: Try to include a mix of projects that showcase different aspects of data science, such as data cleaning, exploratory data analysis, machine learning, and data visualization.

4. Create visualizations: Data visualizations can help make your portfolio more engaging and easier to understand. Use tools like Matplotlib, Seaborn, or Tableau to create visually appealing charts and graphs.

5. Write project summaries: For each project, provide a brief summary of the problem you were trying to solve, the dataset you used, the methods you applied, and the results you obtained. Include any insights or recommendations that came out of your analysis.

6. Showcase your technical skills: Highlight the programming languages, libraries, and tools you used in each project. Mention any specific techniques or algorithms you implemented.

7. Link to your code and data: Provide links to your code repositories (e.g., GitHub) and any datasets you used in your projects. This allows potential employers to review your work in more detail.

8. Keep it updated: Regularly update your portfolio with new projects and skills as you gain more experience in data science. This will show that you are actively engaged in the field and continuously improving your skills.

By following these steps, you can create a comprehensive and visually appealing data science portfolio that will impress potential employers and help you stand out in the competitive job market.
5
Step-by-Step Data Analysis Projects with Python Code


Below are popular data analysis projects from users. They will:

- Help you gain skills in working with real data
- Introduce you to Python libraries for data analysis
- Inspire you for your own data analysis projects

Netflix Data Analysis

Video Game Sales Analysis

Is There a Trend of Increasing Geek Girls?

Let's Discover More About the Olympic Games!

Marketing Analysis

Animal Shelter Data Analysis

Amazon Data Analysis

Billionaire Data Analysis

Credit Card Data Analysis

Pokemon Data Analysis

Spotify Data Analysis. What Does It Take to Hit the Charts
👍103🔥2