ML Research Hub – Telegram
ML Research Hub
32.8K subscribers
4.38K photos
270 videos
23 files
4.74K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
🔹 Title: BiasFreeBench: a Benchmark for Mitigating Bias in Large Language Model Responses

🔹 Publication Date: Published on Sep 30

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00232
• PDF: https://arxiv.org/pdf/2510.00232
• Github: https://github.com/xxupiano/BiasFreeBench

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: Training Vision-Language Process Reward Models for Test-Time Scaling in Multimodal Reasoning: Key Insights and Lessons Learned

🔹 Publication Date: Published on Sep 27

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.23250
• PDF: https://arxiv.org/pdf/2509.23250
• Github: https://github.com/theogbrand/vlprm

🔹 Datasets citing this paper:
https://huggingface.co/datasets/ob11/VL-PRM-Evaluation-Results
https://huggingface.co/datasets/ob11/VL-PRM300K
https://huggingface.co/datasets/ob11/VL-PRM300K-train

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: GEM: A Gym for Agentic LLMs

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01051
• PDF: https://arxiv.org/pdf/2510.01051
• Github: https://github.com/axon-rl/gem

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: Beyond Log Likelihood: Probability-Based Objectives for Supervised Fine-Tuning across the Model Capability Continuum

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00526
• PDF: https://arxiv.org/pdf/2510.00526
• Github: https://github.com/GaotangLi/Beyond-Log-Likelihood

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: On Predictability of Reinforcement Learning Dynamics for Large Language Models

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00553
• PDF: https://arxiv.org/pdf/2510.00553

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: GUI-KV: Efficient GUI Agents via KV Cache with Spatio-Temporal Awareness

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00536
• PDF: https://arxiv.org/pdf/2510.00536

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: JoyAgent-JDGenie: Technical Report on the GAIA

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00510
• PDF: https://arxiv.org/pdf/2510.00510
• Github: https://github.com/jd-opensource/joyagent-jdgenie

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: VLA-RFT: Vision-Language-Action Reinforcement Fine-tuning with Verified Rewards in World Simulators

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00406
• PDF: https://arxiv.org/pdf/2510.00406
• Project Page: https://vla-rft.github.io/
• Github: https://github.com/OpenHelix-Team/VLA-RFT

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: Flash-Searcher: Fast and Effective Web Agents via DAG-Based Parallel Execution

🔹 Publication Date: Published on Sep 29

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25301
• PDF: https://arxiv.org/pdf/2509.25301
• Github: https://github.com/OPPO-PersonalAI/Flash-Searcher

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: Boolean Satisfiability via Imitation Learning

🔹 Publication Date: Published on Sep 29

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25411
• PDF: https://arxiv.org/pdf/2509.25411
• Github: https://github.com/zewei-Zhang/ImitSAT

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: An Empirical Study of Testing Practices in Open Source AI Agent Frameworks and Agentic Applications

🔹 Publication Date: Published on Sep 23

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.19185
• PDF: https://arxiv.org/pdf/2509.19185

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search

🔹 Publication Date: Published on Sep 29

🔹 Paper Links:
• arXiv Page: https://arxiv.org/pdf/2509.25454
• PDF: https://arxiv.org/pdf/2509.25454

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: Infusing Theory of Mind into Socially Intelligent LLM Agents

🔹 Publication Date: Published on Sep 26

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.22887
• PDF: https://arxiv.org/pdf/2509.22887

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
1
🔹 Title: Knapsack RL: Unlocking Exploration of LLMs via Optimizing Budget Allocation

🔹 Publication Date: Published on Sep 30

🔹 Paper Links:
• arXiv Page: https://www.arxiv.org/abs/2509.25849
• PDF: https://arxiv.org/pdf/2509.25849

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
1
🔹 Title: Making, not Taking, the Best of N

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00931
• PDF: https://arxiv.org/pdf/2510.00931

🔹 Datasets citing this paper:
https://huggingface.co/datasets/CohereLabs/fusion-synth-data-geofactx
https://huggingface.co/datasets/CohereLabs/fusion-pairwise-evals-test-time-scaling
https://huggingface.co/datasets/CohereLabs/fusion-pairwise-evals-finetuned
https://huggingface.co/datasets/CohereLabs/fusion-synth-data-ufb

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
1
🔹 Title: BroRL: Scaling Reinforcement Learning via Broadened Exploration

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01180
• PDF: https://arxiv.org/pdf/2510.01180

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
2
🔹 Title: ACON: Optimizing Context Compression for Long-horizon LLM Agents

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00615
• PDF: https://arxiv.org/pdf/2510.00615

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: Eliciting Secret Knowledge from Language Models

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://huggingface.co/collections/bcywinski/eliciting-secret-knowledge-from-language-models-68de1a49ae6fa034e5c105ff
• PDF: https://arxiv.org/pdf/2510.01070
• Github: https://github.com/cywinski/eliciting-secret-knowledge

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
1
🔹 Title: ReSWD: ReSTIR'd, not shaken. Combining Reservoir Sampling and Sliced Wasserstein Distance for Variance Reduction

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01061
• PDF: https://arxiv.org/pdf/2510.01061
• Project Page: https://reservoirswd.github.io/
• Github: https://reservoirswd.github.io/

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: CurES: From Gradient Analysis to Efficient Curriculum Learning for Reasoning LLMs

🔹 Publication Date: Published on Oct 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01037
• PDF: https://arxiv.org/pdf/2510.01037
• Github: https://github.com/ZexuSun/CurES

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT
🔹 Title: VLM-FO1: Bridging the Gap Between High-Level Reasoning and Fine-Grained Perception in VLMs

🔹 Publication Date: Published on Sep 30

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25916
• PDF: https://arxiv.org/pdf/2509.25916

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://news.1rj.ru/str/DataScienceT