🔹 Title: Flash-Searcher: Fast and Effective Web Agents via DAG-Based Parallel Execution
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25301
• PDF: https://arxiv.org/pdf/2509.25301
• Github: https://github.com/OPPO-PersonalAI/Flash-Searcher
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25301
• PDF: https://arxiv.org/pdf/2509.25301
• Github: https://github.com/OPPO-PersonalAI/Flash-Searcher
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: Boolean Satisfiability via Imitation Learning
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25411
• PDF: https://arxiv.org/pdf/2509.25411
• Github: https://github.com/zewei-Zhang/ImitSAT
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25411
• PDF: https://arxiv.org/pdf/2509.25411
• Github: https://github.com/zewei-Zhang/ImitSAT
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: An Empirical Study of Testing Practices in Open Source AI Agent Frameworks and Agentic Applications
🔹 Publication Date: Published on Sep 23
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.19185
• PDF: https://arxiv.org/pdf/2509.19185
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 23
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.19185
• PDF: https://arxiv.org/pdf/2509.19185
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/pdf/2509.25454
• PDF: https://arxiv.org/pdf/2509.25454
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/pdf/2509.25454
• PDF: https://arxiv.org/pdf/2509.25454
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: Infusing Theory of Mind into Socially Intelligent LLM Agents
🔹 Publication Date: Published on Sep 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.22887
• PDF: https://arxiv.org/pdf/2509.22887
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.22887
• PDF: https://arxiv.org/pdf/2509.22887
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Knapsack RL: Unlocking Exploration of LLMs via Optimizing Budget Allocation
🔹 Publication Date: Published on Sep 30
🔹 Paper Links:
• arXiv Page: https://www.arxiv.org/abs/2509.25849
• PDF: https://arxiv.org/pdf/2509.25849
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 30
🔹 Paper Links:
• arXiv Page: https://www.arxiv.org/abs/2509.25849
• PDF: https://arxiv.org/pdf/2509.25849
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Making, not Taking, the Best of N
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00931
• PDF: https://arxiv.org/pdf/2510.00931
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/CohereLabs/fusion-synth-data-geofactx
• https://huggingface.co/datasets/CohereLabs/fusion-pairwise-evals-test-time-scaling
• https://huggingface.co/datasets/CohereLabs/fusion-pairwise-evals-finetuned
• https://huggingface.co/datasets/CohereLabs/fusion-synth-data-ufb
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00931
• PDF: https://arxiv.org/pdf/2510.00931
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/CohereLabs/fusion-synth-data-geofactx
• https://huggingface.co/datasets/CohereLabs/fusion-pairwise-evals-test-time-scaling
• https://huggingface.co/datasets/CohereLabs/fusion-pairwise-evals-finetuned
• https://huggingface.co/datasets/CohereLabs/fusion-synth-data-ufb
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: BroRL: Scaling Reinforcement Learning via Broadened Exploration
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01180
• PDF: https://arxiv.org/pdf/2510.01180
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01180
• PDF: https://arxiv.org/pdf/2510.01180
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤2
🔹 Title: ACON: Optimizing Context Compression for Long-horizon LLM Agents
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00615
• PDF: https://arxiv.org/pdf/2510.00615
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00615
• PDF: https://arxiv.org/pdf/2510.00615
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: Eliciting Secret Knowledge from Language Models
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://huggingface.co/collections/bcywinski/eliciting-secret-knowledge-from-language-models-68de1a49ae6fa034e5c105ff
• PDF: https://arxiv.org/pdf/2510.01070
• Github: https://github.com/cywinski/eliciting-secret-knowledge
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://huggingface.co/collections/bcywinski/eliciting-secret-knowledge-from-language-models-68de1a49ae6fa034e5c105ff
• PDF: https://arxiv.org/pdf/2510.01070
• Github: https://github.com/cywinski/eliciting-secret-knowledge
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: ReSWD: ReSTIR'd, not shaken. Combining Reservoir Sampling and Sliced Wasserstein Distance for Variance Reduction
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01061
• PDF: https://arxiv.org/pdf/2510.01061
• Project Page: https://reservoirswd.github.io/
• Github: https://reservoirswd.github.io/
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01061
• PDF: https://arxiv.org/pdf/2510.01061
• Project Page: https://reservoirswd.github.io/
• Github: https://reservoirswd.github.io/
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: CurES: From Gradient Analysis to Efficient Curriculum Learning for Reasoning LLMs
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01037
• PDF: https://arxiv.org/pdf/2510.01037
• Github: https://github.com/ZexuSun/CurES
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.01037
• PDF: https://arxiv.org/pdf/2510.01037
• Github: https://github.com/ZexuSun/CurES
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: VLM-FO1: Bridging the Gap Between High-Level Reasoning and Fine-Grained Perception in VLMs
🔹 Publication Date: Published on Sep 30
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25916
• PDF: https://arxiv.org/pdf/2509.25916
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 30
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25916
• PDF: https://arxiv.org/pdf/2509.25916
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: Hyperdimensional Probe: Decoding LLM Representations via Vector Symbolic Architectures
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25045
• PDF: https://arxiv.org/pdf/2509.25045
• Github: https://github.com/Ipazia-AI/hyperprobe
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25045
• PDF: https://arxiv.org/pdf/2509.25045
• Github: https://github.com/Ipazia-AI/hyperprobe
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: PIPer: On-Device Environment Setup via Online Reinforcement Learning
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25455
• PDF: https://arxiv.org/pdf/2509.25455
• Github: https://github.com/JetBrains-Research/PIPer
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/JetBrains-Research/PIPer-envbench-zeroshot-rl
• https://huggingface.co/datasets/JetBrains-Research/PIPer-SFT-2500-sharegpt
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.25455
• PDF: https://arxiv.org/pdf/2509.25455
• Github: https://github.com/JetBrains-Research/PIPer
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/JetBrains-Research/PIPer-envbench-zeroshot-rl
• https://huggingface.co/datasets/JetBrains-Research/PIPer-SFT-2500-sharegpt
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: BindWeave: Subject-Consistent Video Generation via Cross-Modal Integration
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00438
• PDF: https://arxiv.org/pdf/2510.00438
• Project Page: https://lzy-dot.github.io/BindWeave/
• Github: https://lzy-dot.github.io/BindWeave
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00438
• PDF: https://arxiv.org/pdf/2510.00438
• Project Page: https://lzy-dot.github.io/BindWeave/
• Github: https://lzy-dot.github.io/BindWeave
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤2
Forwarded from Machine Learning with Python
Our paid channel contains more than 9000 books and 500 paid courses
With a $3 monthly subnoscription, you can cancel whenever you want
https://news.1rj.ru/str/+r_Tcx2c-oVU1OWNi
With a $3 monthly subnoscription, you can cancel whenever you want
https://news.1rj.ru/str/+r_Tcx2c-oVU1OWNi
Telegram
Data Science Premium (Books & Courses)
access to thousands of valuable resources, including essential books and courses.
Paid books
Paid courses from coursera and Udemy
Paid project
Paid books
Paid courses from coursera and Udemy
Paid project
🔹 Title: It Takes Two: Your GRPO Is Secretly DPO
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00977
• PDF: https://arxiv.org/pdf/2510.00977
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00977
• PDF: https://arxiv.org/pdf/2510.00977
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: SINQ: Sinkhorn-Normalized Quantization for Calibration-Free Low-Precision LLM Weights
🔹 Publication Date: Published on Sep 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.22944
• PDF: https://arxiv.org/pdf/2509.22944
• Project Page: https://github.com/huawei-csl/SINQ
• Github: https://github.com/huawei-csl/SINQ
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.22944
• PDF: https://arxiv.org/pdf/2509.22944
• Project Page: https://github.com/huawei-csl/SINQ
• Github: https://github.com/huawei-csl/SINQ
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: QUASAR: Quantum Assembly Code Generation Using Tool-Augmented LLMs via Agentic RL
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00967
• PDF: https://arxiv.org/pdf/2510.00967
• Github: https://github.com/benyucong/QUASAR
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/Benyucong/graph-data-quantum-rl
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Oct 1
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.00967
• PDF: https://arxiv.org/pdf/2510.00967
• Github: https://github.com/benyucong/QUASAR
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/Benyucong/graph-data-quantum-rl
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: EditReward: A Human-Aligned Reward Model for Instruction-Guided Image Editing
🔹 Publication Date: Published on Sep 30
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.26346
• PDF: https://arxiv.org/pdf/2509.26346
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Sep 30
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.26346
• PDF: https://arxiv.org/pdf/2509.26346
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT