Forwarded from New Yorko Times (Yury Kashnitsky)
Пет-проекты и менторство
#career #ml #petproject
Идей всяких петов у меня обычно полно (жаль, что идей для годных стартапов не так много), буду мини-батчами таких идей делиться. Тем более что где-то сам готов поучаствовать, довести проект до публикации хотя бы на архиве. По перечисленным темам готов что-то обсудить или связать с шарящими людьми.
Тут стоит упомянуть менторскую инициативу, запущенную в Singularis.ai Айрой Монгуш @aira_mo & Co. Вот описание программы, там же список менторов. Список годный, к некоторым из этих людей я бы сам сходил как менти. Хватайте! Можно будет и ко мне постучаться, но я скорее всего забит, фрухпут выделил – 1 менти за раз.
Вот какие идеи сейчас на уме (помимо умного поиска по мемам, про который уже писал), в порядке от более простых и хорошо формулированных к менее тривиальным и прописанным:
1) Валидация sciBERT-лонгформера на нескольких датасетах, техрепорт. Я как-то опубликовал расширенную версию SciBERT, поддерживающие тексты до 4096 токенов (делаются такие штуки по тьюториалу от HF, там суть в том, что позиционные эмбеддинги расширяются с 512 до 4096 простым копированием). Но я толком не валидировал выхлоп с этого дела. Можно взять несколько датасетов с длинными научными текстами (будь до классификация статей или QA для страниц Википедии, полно бенчмарков в статье Меты про Galactica) и сравниться с обычным SciBERT и лонгформером на базе роберты (не дообученной на научный контент). Из этого можно сделать техрепорт, опубликовать на архиве;
2) Удивительно, но для того же научного домена я не нашел легковесной модельки а-ля DistilBERT. Можно взять SciBERT, дистилировать его в модельку размера DistilBERT, опубликовать на HF и прославиться. Также опубликовать техрепорт. В целом можно следовать статье Давида Дале @izolenta_mebiusa про малького шустрого Берта на русском. Там Давид аж о 8-ми лоссах дистиллирует. То есть можно взять не только одного SciBERT как teacher и не только logloss, но также Galactica и более хитрые лоссы а-ля выравнивание CLS-эмбеддингов моделей учителя и ученика;
3) Ассистент на вопросах-ответах Stackoverflow. Там уже полно ранжированных ответов, с кодом. Возможно, никакой RLHF не нужен с таким датасетом. А самому StackOverflow, на мой взгляд, нет смысла обучать такого бота – им нужны кожаные мешки на сайте. Пока я это придумывал, 🤗 уже собрал датасет (узнал из поста Игоря Котенкова), ну идея в воздухе висела в принципе. Дальше можно повалидироваться с chatGPT, Codex и прочими ассистентами, с лету лучше вряд ли получится, но опыт интересный. Умеренные LLM в целом уже научились файнтюнить за разумное время даже на одной GPU, вот пример от инженера HF;
4) Распознавалка ребенка по мере его роста. Самый размыто формулированный пет – про CV и для тех, кто ждет ребенка, т.е. самый нишевый вариант из перечисленных. Суть: дите растет, модель ошибается, нужен continual learning. Тут сплошной дата дрифт и сходу вообще не понятно как подступиться. По крайней мере, алгоритмы Apple ошибаются, мне в галерее айфона показывает несколько инстансов моей дочери.
По поводу первых двух – можно мне писать, я готов подключиться к написанию репорта. Правда, я учусь делегировать (больно) и воздержусь от ковыряния в коде своими руками, буду чистый “Data Scientist ртом”. Со статьей при этом готов активно помогать. Лучше в коментах писать, кто что готов взять, можно скоординироваться и между собой.
#career #ml #petproject
Идей всяких петов у меня обычно полно (жаль, что идей для годных стартапов не так много), буду мини-батчами таких идей делиться. Тем более что где-то сам готов поучаствовать, довести проект до публикации хотя бы на архиве. По перечисленным темам готов что-то обсудить или связать с шарящими людьми.
Тут стоит упомянуть менторскую инициативу, запущенную в Singularis.ai Айрой Монгуш @aira_mo & Co. Вот описание программы, там же список менторов. Список годный, к некоторым из этих людей я бы сам сходил как менти. Хватайте! Можно будет и ко мне постучаться, но я скорее всего забит, фрухпут выделил – 1 менти за раз.
Вот какие идеи сейчас на уме (помимо умного поиска по мемам, про который уже писал), в порядке от более простых и хорошо формулированных к менее тривиальным и прописанным:
1) Валидация sciBERT-лонгформера на нескольких датасетах, техрепорт. Я как-то опубликовал расширенную версию SciBERT, поддерживающие тексты до 4096 токенов (делаются такие штуки по тьюториалу от HF, там суть в том, что позиционные эмбеддинги расширяются с 512 до 4096 простым копированием). Но я толком не валидировал выхлоп с этого дела. Можно взять несколько датасетов с длинными научными текстами (будь до классификация статей или QA для страниц Википедии, полно бенчмарков в статье Меты про Galactica) и сравниться с обычным SciBERT и лонгформером на базе роберты (не дообученной на научный контент). Из этого можно сделать техрепорт, опубликовать на архиве;
2) Удивительно, но для того же научного домена я не нашел легковесной модельки а-ля DistilBERT. Можно взять SciBERT, дистилировать его в модельку размера DistilBERT, опубликовать на HF и прославиться. Также опубликовать техрепорт. В целом можно следовать статье Давида Дале @izolenta_mebiusa про малького шустрого Берта на русском. Там Давид аж о 8-ми лоссах дистиллирует. То есть можно взять не только одного SciBERT как teacher и не только logloss, но также Galactica и более хитрые лоссы а-ля выравнивание CLS-эмбеддингов моделей учителя и ученика;
3) Ассистент на вопросах-ответах Stackoverflow. Там уже полно ранжированных ответов, с кодом. Возможно, никакой RLHF не нужен с таким датасетом. А самому StackOverflow, на мой взгляд, нет смысла обучать такого бота – им нужны кожаные мешки на сайте. Пока я это придумывал, 🤗 уже собрал датасет (узнал из поста Игоря Котенкова), ну идея в воздухе висела в принципе. Дальше можно повалидироваться с chatGPT, Codex и прочими ассистентами, с лету лучше вряд ли получится, но опыт интересный. Умеренные LLM в целом уже научились файнтюнить за разумное время даже на одной GPU, вот пример от инженера HF;
4) Распознавалка ребенка по мере его роста. Самый размыто формулированный пет – про CV и для тех, кто ждет ребенка, т.е. самый нишевый вариант из перечисленных. Суть: дите растет, модель ошибается, нужен continual learning. Тут сплошной дата дрифт и сходу вообще не понятно как подступиться. По крайней мере, алгоритмы Apple ошибаются, мне в галерее айфона показывает несколько инстансов моей дочери.
По поводу первых двух – можно мне писать, я готов подключиться к написанию репорта. Правда, я учусь делегировать (больно) и воздержусь от ковыряния в коде своими руками, буду чистый “Data Scientist ртом”. Со статьей при этом готов активно помогать. Лучше в коментах писать, кто что готов взять, можно скоординироваться и между собой.
Forwarded from Data Science Private Sharing
#курс
После долгих лет (альфа-)тестирования, курс "Алгоритмы Машинного обучения с нуля" наконец-то выходит в свет (бета-тестирование :)
Курс бесплатный :) На Степике: https://stepik.org/course/68260
Курс посвящен реализации всех классических алгоритмов машинного обучения с нуля. На чистом питоне + нампай и пандас.
Упор в курсе будет делаться именно на алгоритмы. Хотя и немного математики тоже присутствует.
Пока реализовано 6 уроков:
- Два вида линейных моделей
- Деревья решений (классификация и регрессия)
- Случайный лес (классификация и регрессия)
Остальные будут открываться по мере готовности.
З.Ы. Для успешного прохождения курса вам понадобятся знания основ МЛ, а также уверенное владение питоном.
После долгих лет (альфа-)тестирования, курс "Алгоритмы Машинного обучения с нуля" наконец-то выходит в свет (бета-тестирование :)
Курс бесплатный :) На Степике: https://stepik.org/course/68260
Курс посвящен реализации всех классических алгоритмов машинного обучения с нуля. На чистом питоне + нампай и пандас.
Упор в курсе будет делаться именно на алгоритмы. Хотя и немного математики тоже присутствует.
Пока реализовано 6 уроков:
- Два вида линейных моделей
- Деревья решений (классификация и регрессия)
- Случайный лес (классификация и регрессия)
Остальные будут открываться по мере готовности.
З.Ы. Для успешного прохождения курса вам понадобятся знания основ МЛ, а также уверенное владение питоном.
👍4
Forwarded from эйай ньюз
Media is too big
VIEW IN TELEGRAM
MMS: Scaling Speech Technology to 1000+ languages
Коллеги из Meta просто на кэжуаое выпустили модель, которая переводит 1100 языков из текс а в аудио и из аудио в текст.
Это всего лишь новый майлстоун в спич-рекогнишене 😀.
Что по сути:
- wave2vec 2.0: многоязычная модель распознавания речи с 1илрд параметроа , обученная на 1107 языках
— ошибка на 50% по сравнению с Whisper.
— это единая модель для преобразования текста в речь (TTS), поддерживающая так много языков: аж 1107!.
— включает в себя Классификатор языков, идентифицируюший 4017 языков.
Кроме всего прочего, для обучения собрали и использовали аудио, где люди читают Библию на разных языках. Потому, кажется нет другой книги, которая была бы переведена на столько разных языков.
Самое клёвое, что веса и код уже не гитхабе!
Блогпост
@ai_newz
Коллеги из Meta просто на кэжуаое выпустили модель, которая переводит 1100 языков из текс а в аудио и из аудио в текст.
Это всего лишь новый майлстоун в спич-рекогнишене 😀.
Что по сути:
- wave2vec 2.0: многоязычная модель распознавания речи с 1илрд параметроа , обученная на 1107 языках
— ошибка на 50% по сравнению с Whisper.
— это единая модель для преобразования текста в речь (TTS), поддерживающая так много языков: аж 1107!.
— включает в себя Классификатор языков, идентифицируюший 4017 языков.
Кроме всего прочего, для обучения собрали и использовали аудио, где люди читают Библию на разных языках. Потому, кажется нет другой книги, которая была бы переведена на столько разных языков.
Самое клёвое, что веса и код уже не гитхабе!
Блогпост
@ai_newz
🔥2
Forwarded from Ilya Gusev
Всем привет! Несколько апдейтов по Сайге:
0. Демо на HF самой маленькой модели: тут
1. Доклад на Датафесте, слайды тут, видео тут
2. Колаб для дообучения Лламы на русских инструкциях и последующей квантизации: тут
3. Демо с retrieval QA на основе 13B модели: тут
4. Первая итерации WizardLM-like улучшения RuTurboAlpaca: тут
Все те же ссылки собраны тут
0. Демо на HF самой маленькой модели: тут
1. Доклад на Датафесте, слайды тут, видео тут
2. Колаб для дообучения Лламы на русских инструкциях и последующей квантизации: тут
3. Демо с retrieval QA на основе 13B модели: тут
4. Первая итерации WizardLM-like улучшения RuTurboAlpaca: тут
Все те же ссылки собраны тут
🔥2
Forwarded from эйай ньюз
Аннотированный код
Наткнулся на классный сайт, где собран код некоторых популярных моделей (или их частей), например Stable Diffusion, GPT, Switch Tranformer, MPL-Mixer и др. Весь цимес в том, что каждая строка кода задокументирована, и показаны соответствующие математические формулы.
Будет полезно тем, кто любит начининать изучать модели сразу с кода. Как раз занятие на воскресенье.
На скринах - код DDIM и Adam.
https://nn.labml.ai/
@ai_newz
Наткнулся на классный сайт, где собран код некоторых популярных моделей (или их частей), например Stable Diffusion, GPT, Switch Tranformer, MPL-Mixer и др. Весь цимес в том, что каждая строка кода задокументирована, и показаны соответствующие математические формулы.
Будет полезно тем, кто любит начининать изучать модели сразу с кода. Как раз занятие на воскресенье.
На скринах - код DDIM и Adam.
https://nn.labml.ai/
@ai_newz
🔥11
Forwarded from Dealer.AI
Всем привет, мы строили строили и наконец построили!
Первая супер-библиотека по spelling corruption SAGE.
Работа была не простой, вместе с ребятами из команды AGI NLP- мои герои снова:
@alenusch, @qwertysobaka, @go_bobert,
мы сделали оч крутой инструмент. Он позволяет атаковать тексты при помощи добавления опечаток, перестановок и пр., а также делать обратное - фиксить их.
UPD. Забыл совсем!? Мы выбили SOTA по spellcheking!!!
Интересно?
Го читать на хабр!
https://habr.com/ru/companies/sberdevices/articles/763932/
Наша библиотека SAGE:
https://github.com/ai-forever/sage
AI-service в Клауде:
https://cloud.ru/ru/datahub/generative-spell-checking
Первая супер-библиотека по spelling corruption SAGE.
Работа была не простой, вместе с ребятами из команды AGI NLP- мои герои снова:
@alenusch, @qwertysobaka, @go_bobert,
мы сделали оч крутой инструмент. Он позволяет атаковать тексты при помощи добавления опечаток, перестановок и пр., а также делать обратное - фиксить их.
UPD. Забыл совсем!? Мы выбили SOTA по spellcheking!!!
Интересно?
Го читать на хабр!
https://habr.com/ru/companies/sberdevices/articles/763932/
Наша библиотека SAGE:
https://github.com/ai-forever/sage
AI-service в Клауде:
https://cloud.ru/ru/datahub/generative-spell-checking
Telegram
Dealer.AI
Друзья, сегодня проходит второй день Конференции Диалог2023.
Мы рады сообщить, что наша работа по атакам на текст вошла в Сборник статей, тема: Augmentation methods for spelling corruptions.
Авторы мои коллеги, товарищи и подписчики:@alenusch, @qwertysobaka…
Мы рады сообщить, что наша работа по атакам на текст вошла в Сборник статей, тема: Augmentation methods for spelling corruptions.
Авторы мои коллеги, товарищи и подписчики:@alenusch, @qwertysobaka…
👍2
Forwarded from LightAutoML framework (Olga Plosskaya)
🎓Всем привет, мы перезапустили наш курс по LightAutoML в формате коротких лекций и how-to видео (от 2 до 15 мин)
Теперь можно быстро вспомнить, что есть в LAMA! Спасибо коллегам из ВШЭ за помощь в упаковке наших 3х часовых видео в удобный формат.
Вас ждет 5 модулей.
В последнем собраны ответы на самые частые вопросы, а так же новая функциональность.
Видео будут пополняться, за апдейтами релизов лучше по-прежнему следить в репозитории и не забывайте ставить ⭐️ и добавлять issues на новую функциональность!
Ну и feel free, если у вас есть доработки, кидайте в нас пул реквесты!
Теперь можно быстро вспомнить, что есть в LAMA! Спасибо коллегам из ВШЭ за помощь в упаковке наших 3х часовых видео в удобный формат.
Вас ждет 5 модулей.
В последнем собраны ответы на самые частые вопросы, а так же новая функциональность.
Видео будут пополняться, за апдейтами релизов лучше по-прежнему следить в репозитории и не забывайте ставить ⭐️ и добавлять issues на новую функциональность!
Ну и feel free, если у вас есть доработки, кидайте в нас пул реквесты!
developers.sber.ru
Вводный курс LightAutoML – База знаний
Работа с фреймворком разработки ML-моделей LightAutoML. Как функционирует библиотека фреймворка, чем она полезна и как можно научиться с ней работать.
TinyML and Efficient Deep Learning Computing
Свежий курс по оптимизации сеток от MIT
https://hanlab.mit.edu/courses/2023-fall-65940
Свежий курс по оптимизации сеток от MIT
https://hanlab.mit.edu/courses/2023-fall-65940
hanlab.mit.edu
MIT 6.5940 Fall 2023 TinyML and Efficient Deep Learning Computing
This course focuses on efficient machine learning and systems. This is a crucial area as deep neural networks demand extraordinary levels of computation, hindering its deployment on everyday devices and burdening the cloud infrastructure. This course introduces…
👍1
Forwarded from Small Data Science for Russian Adventurers
#визуализация
Странно, что я ещё не упоминал здесь такой интересный ресурс. Можно использовать для освежения в памяти тем по ML. Полно интересных рисунков по каждой теме. Есть три блока: ML, ML-Engineering, проективная геометрия, по DL совсем чуть-чуть и ресурс не обновляется с начала года.
https://illustrated-machine-learning.github.io/
Странно, что я ещё не упоминал здесь такой интересный ресурс. Можно использовать для освежения в памяти тем по ML. Полно интересных рисунков по каждой теме. Есть три блока: ML, ML-Engineering, проективная геометрия, по DL совсем чуть-чуть и ресурс не обновляется с начала года.
https://illustrated-machine-learning.github.io/
Forwarded from Kantor.AI (Victor Kantor)
Обучиться Data Science «самому», без вузовских курсов, можно, но сложно
Курсов «Стань Data Scientist’ом за три месяца» с заманчивыми обещаниями о трудоустройстве и большом заработке довольно много. Грешат этим все: от GeekBrains и Skillbox до Яндекс Практикума(хотя, по моему субъективному мнению, коллеги из Яндекса работают наиболее деликатно и им за это от меня респект).
Нет ничего зазорного в курсах хоть на три месяца, хоть на три занятия.
Любой формат позволяет донести определённые знания, однако важно сохранять трезвость в оценке ценности подобных курсов.
Человек с хорошим техническим образованием из МГУ, МФТИ, ВШЭ, СПбГУ, ИТМО и других топовых вузов вполне в состоянии устроиться стажёром в data science и после вводного курса. Вряд ли в топовую компанию, но начать нарабатывать опыт уже можно.
Более того, полноценно проходить даже короткий курс необязательно — это лишь способ ускорить процесс. Если человек умеет программировать, читать документацию и изучать библиотеки, можно обойтись и без курса:
— решайте Kaggle.com, начиная с учебных соревнований
— читайте форумы соревнований,
— практикуйтесь в применении DS библиотек (sklearn, lightgbm, catboost, xgboost, pandas, polars, seaborn, pytorch, ambrosia)
— изучайте их документацию
Находите открытые материалы курсов по data science и разбирайте их самостоятельно. Знаю примеры людей, бегло изучающих семестровый курс из Стэнфорда за ночь. Не всем обязательно демонстрировать такую суперпроизводительность, да и почти любой человек после подобной учёбы многое забудет через неделю. Но вместе с практикой этот подход совершенно нормальный.
Ещё полезно через какое-то время изучить ту же тему в новом источнике. Интересующихся людей в целом всегда выделяет то, что им недостаточно прочитать одну книгу, решить задачу один раз, один раз понять, как всё устроено. Им интересно изучать вопрос с разных сторон снова и снова.
Однако нужно помнить, что без сильной базы по программированию и математике путь в Data Science может быть долгим. Это нормально. Главное — не останавливаться в изучении фундаментальных направлений. Если понравится процесс — вы его пройдёте, сами или с чьей-то помощью.
Курсов «Стань Data Scientist’ом за три месяца» с заманчивыми обещаниями о трудоустройстве и большом заработке довольно много. Грешат этим все: от GeekBrains и Skillbox до Яндекс Практикума
Нет ничего зазорного в курсах хоть на три месяца, хоть на три занятия.
Любой формат позволяет донести определённые знания, однако важно сохранять трезвость в оценке ценности подобных курсов.
Человек с хорошим техническим образованием из МГУ, МФТИ, ВШЭ, СПбГУ, ИТМО и других топовых вузов вполне в состоянии устроиться стажёром в data science и после вводного курса. Вряд ли в топовую компанию, но начать нарабатывать опыт уже можно.
Более того, полноценно проходить даже короткий курс необязательно — это лишь способ ускорить процесс. Если человек умеет программировать, читать документацию и изучать библиотеки, можно обойтись и без курса:
— решайте Kaggle.com, начиная с учебных соревнований
— читайте форумы соревнований,
— практикуйтесь в применении DS библиотек (sklearn, lightgbm, catboost, xgboost, pandas, polars, seaborn, pytorch, ambrosia)
— изучайте их документацию
Находите открытые материалы курсов по data science и разбирайте их самостоятельно. Знаю примеры людей, бегло изучающих семестровый курс из Стэнфорда за ночь. Не всем обязательно демонстрировать такую суперпроизводительность, да и почти любой человек после подобной учёбы многое забудет через неделю. Но вместе с практикой этот подход совершенно нормальный.
Ещё полезно через какое-то время изучить ту же тему в новом источнике. Интересующихся людей в целом всегда выделяет то, что им недостаточно прочитать одну книгу, решить задачу один раз, один раз понять, как всё устроено. Им интересно изучать вопрос с разных сторон снова и снова.
Однако нужно помнить, что без сильной базы по программированию и математике путь в Data Science может быть долгим. Это нормально. Главное — не останавливаться в изучении фундаментальных направлений. Если понравится процесс — вы его пройдёте, сами или с чьей-то помощью.
Kaggle
Kaggle: Your Machine Learning and Data Science Community
Kaggle is the world’s largest data science community with powerful tools and resources to help you achieve your data science goals.
🔥3
Forwarded from Small Data Science for Russian Adventurers
#книга
Simon J.D. Prince "Understanding Deep Learning"
Незаслуженно малоизвестная книга. Но это самое лучшее, что в последние годы писалось по глубокому обучению. Материал очень современный (GPT3, диффузионные модели, графовые сети есть). Повествование с основ и до этических проблем, очень широкий охват. Текст и рисунки авторские. Достаточно подробная библиография. Ну разве что примеров кода нет (книга теоретическая). Настоятельно рекомендую!
https://udlbook.github.io/udlbook/
Simon J.D. Prince "Understanding Deep Learning"
Незаслуженно малоизвестная книга. Но это самое лучшее, что в последние годы писалось по глубокому обучению. Материал очень современный (GPT3, диффузионные модели, графовые сети есть). Повествование с основ и до этических проблем, очень широкий охват. Текст и рисунки авторские. Достаточно подробная библиография. Ну разве что примеров кода нет (книга теоретическая). Настоятельно рекомендую!
https://udlbook.github.io/udlbook/
👍6
Классификация авторства текстов. Обзор Kaggle соревнования «H2O Predict the LLM»
https://habr.com/ru/articles/772364/
https://habr.com/ru/articles/772364/
Хабр
Классификация авторства текстов. Обзор Kaggle соревнования «H2O Predict the LLM»
В день, когда Сэм Альтман в темной одежде на темном фоне рассказывал миру о запуске GPT-4-Turbo, в те же самые минуты на Kaggle завершалось небольшое, но любопытное соревнование “Predict the LLM”....
❤5
Forwarded from 🏆 Data Feeling | AI (Aleron Milenkin)
This media is not supported in your browser
VIEW IN TELEGRAM
Нужно прописать только это:
%load_ext cudf.pandas
import pandas as pd@datafeeling
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4❤1
«ИИ без границ»: как научить Transformer обрабатывать длинные тексты
https://habr.com/p/773312/
https://habr.com/p/773312/
Habr
«ИИ без границ»: как научить Transformer обрабатывать длинные тексты
Дисклеймер Статья посвящёна проблеме обработки длинных входных последовательностей нейросетевыми моделями на основе архитектуры Transformer. От читателя требуется понимание общих принципов работы...
Forwarded from Generative Ai
X-LLM. Новая библиотека для обучения LLM в экосистеме Huggingface.
Она поддерживает все современные методы (QLoRA, Flash Attention 2, Gradient checkpointing, GPTQ квантизацию, W&B, обучение на нескольких GPU с помощью DeepSpeed, даже каждый чекпоинт сохраняет сразу в Huggingface Hub). Подходит как для быстрого прототипирования, так и для production-ready решений.
Репозиторий, внутри много примеров: https://github.com/BobaZooba/xllm
Colab с обучением 7B модели: ссылка
Open source модель: https://huggingface.co/BobaZooba/Shurale7B-v1
Интерактивная текстовая игра (с моделью выше) с динамическими персонажами и историями: @TaleQuestBot (да, бот в телеграм)
Она поддерживает все современные методы (QLoRA, Flash Attention 2, Gradient checkpointing, GPTQ квантизацию, W&B, обучение на нескольких GPU с помощью DeepSpeed, даже каждый чекпоинт сохраняет сразу в Huggingface Hub). Подходит как для быстрого прототипирования, так и для production-ready решений.
Репозиторий, внутри много примеров: https://github.com/BobaZooba/xllm
Colab с обучением 7B модели: ссылка
Open source модель: https://huggingface.co/BobaZooba/Shurale7B-v1
Интерактивная текстовая игра (с моделью выше) с динамическими персонажами и историями: @TaleQuestBot (да, бот в телеграм)
GitHub
GitHub - bobazooba/xllm: 🦖 X—LLM: Cutting Edge & Easy LLM Finetuning
🦖 X—LLM: Cutting Edge & Easy LLM Finetuning. Contribute to bobazooba/xllm development by creating an account on GitHub.
🔥5
Forwarded from эйай ньюз
This media is not supported in your browser
VIEW IN TELEGRAM
🔥EMU VIDEO:
Factorizing Text-to-Video Generation by Explicit Image Conditioning
Сегодня сразу два больших релиза от моих коллег из Meta GenAI! Один из них — опубликовали модель EMU-Video.
Новая модель строится на базе Text-2-image модели Emu, и теперь может генерить 4-секундные видео 512x512 в 16 fps.
Архитектура, грубо: мы берем pre-trained 2.7B Emu для генерации text-2-image, замораживаем Unet и добавляем в него дополнительные аттеншен слои, которые работают вдоль врменной оси. И тренируем только доп слои, на генерацию видео по тексту.
На вход даём либо картинку + текст, либо только текст (в этом случае картинку генерим с помощью Emu). На выходе — 65 фрейма 512x512.
Если погрузиться в детали, то сначала генерится 16 фреймов, а затем ещё одна модель с такой же архитектурой интерполирует видео до 65 фреймов.
Это теперь SOTA в text-2-video:
✔️ Emu-Video vs Gen-2: победа Emu-Video в 78.5% случаев
✔️ Emu-Video vs Pika - победа в 98.5% случаев по оценке кожаных разметчиков.
Сайт проекта
Демо-результаты
@ai_newz
Factorizing Text-to-Video Generation by Explicit Image Conditioning
Сегодня сразу два больших релиза от моих коллег из Meta GenAI! Один из них — опубликовали модель EMU-Video.
Новая модель строится на базе Text-2-image модели Emu, и теперь может генерить 4-секундные видео 512x512 в 16 fps.
Архитектура, грубо: мы берем pre-trained 2.7B Emu для генерации text-2-image, замораживаем Unet и добавляем в него дополнительные аттеншен слои, которые работают вдоль врменной оси. И тренируем только доп слои, на генерацию видео по тексту.
На вход даём либо картинку + текст, либо только текст (в этом случае картинку генерим с помощью Emu). На выходе — 65 фрейма 512x512.
Если погрузиться в детали, то сначала генерится 16 фреймов, а затем ещё одна модель с такой же архитектурой интерполирует видео до 65 фреймов.
Это теперь SOTA в text-2-video:
Сайт проекта
Демо-результаты
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1