Machine Learning Research – Telegram
Machine Learning Research
955 subscribers
61 photos
7 videos
2 files
1.05K links
Download Telegram
Forwarded from эйай ньюз
Аннотированный код

Наткнулся на классный сайт, где собран код некоторых популярных моделей (или их частей), например Stable Diffusion, GPT, Switch Tranformer, MPL-Mixer и др. Весь цимес в том, что каждая строка кода задокументирована, и показаны соответствующие математические формулы.

Будет полезно тем, кто любит начининать изучать модели сразу с кода. Как раз занятие на воскресенье.

На скринах - код DDIM и Adam.

https://nn.labml.ai/

@ai_newz
🔥11
Forwarded from Dealer.AI
Всем привет, мы строили строили и наконец построили!

Первая супер-библиотека по spelling corruption SAGE.

Работа была не простой, вместе с ребятами из команды AGI NLP- мои герои снова:
@alenusch, @qwertysobaka, @go_bobert,
мы сделали оч крутой инструмент. Он позволяет атаковать тексты при помощи добавления опечаток, перестановок и пр., а также делать обратное - фиксить их.

UPD. Забыл совсем!? Мы выбили SOTA по spellcheking!!!

Интересно?
Го читать на хабр!


https://habr.com/ru/companies/sberdevices/articles/763932/

Наша библиотека SAGE:
https://github.com/ai-forever/sage

AI-service в Клауде:
https://cloud.ru/ru/datahub/generative-spell-checking
👍2
Forwarded from LightAutoML framework (Olga Plosskaya)
🎓Всем привет, мы перезапустили наш курс по LightAutoML в формате коротких лекций и how-to видео (от 2 до 15 мин)

Теперь можно быстро вспомнить, что есть в LAMA! Спасибо коллегам из ВШЭ за помощь в упаковке наших 3х часовых видео в удобный формат.

Вас ждет 5 модулей.
В последнем собраны ответы на самые частые вопросы, а так же новая функциональность.

Видео будут пополняться, за апдейтами релизов лучше по-прежнему следить в репозитории и не забывайте ставить ⭐️ и добавлять issues на новую функциональность!
Ну и feel free, если у вас есть доработки, кидайте в нас пул реквесты!
#визуализация
Странно, что я ещё не упоминал здесь такой интересный ресурс. Можно использовать для освежения в памяти тем по ML. Полно интересных рисунков по каждой теме. Есть три блока: ML, ML-Engineering, проективная геометрия, по DL совсем чуть-чуть и ресурс не обновляется с начала года.
https://illustrated-machine-learning.github.io/
Forwarded from Kantor.AI (Victor Kantor)
Обучиться Data Science «самому», без вузовских курсов, можно, но сложно

Курсов «Стань Data Scientist’ом за три месяца» с заманчивыми обещаниями о трудоустройстве и большом заработке довольно много. Грешат этим все: от GeekBrains и Skillbox до Яндекс Практикума (хотя, по моему субъективному мнению, коллеги из Яндекса работают наиболее деликатно и им за это от меня респект).

Нет ничего зазорного в курсах хоть на три месяца, хоть на три занятия.

Любой формат позволяет донести определённые знания, однако важно сохранять трезвость в оценке ценности подобных курсов.

Человек с хорошим техническим образованием из МГУ, МФТИ, ВШЭ, СПбГУ, ИТМО и других топовых вузов вполне в состоянии устроиться стажёром в data science и после вводного курса. Вряд ли в топовую компанию, но начать нарабатывать опыт уже можно.

Более того, полноценно проходить даже короткий курс необязательно — это лишь способ ускорить процесс. Если человек умеет программировать, читать документацию и изучать библиотеки, можно обойтись и без курса:

— решайте Kaggle.com, начиная с учебных соревнований
— читайте форумы соревнований,
— практикуйтесь в применении DS библиотек (sklearn, lightgbm, catboost, xgboost, pandas, polars, seaborn, pytorch, ambrosia)
— изучайте их документацию

Находите открытые материалы курсов по data science и разбирайте их самостоятельно. Знаю примеры людей, бегло изучающих семестровый курс из Стэнфорда за ночь. Не всем обязательно демонстрировать такую суперпроизводительность, да и почти любой человек после подобной учёбы многое забудет через неделю. Но вместе с практикой этот подход совершенно нормальный.

Ещё полезно через какое-то время изучить ту же тему в новом источнике. Интересующихся людей в целом всегда выделяет то, что им недостаточно прочитать одну книгу, решить задачу один раз, один раз понять, как всё устроено. Им интересно изучать вопрос с разных сторон снова и снова.

Однако нужно помнить, что без сильной базы по программированию и математике путь в Data Science может быть долгим. Это нормально. Главное — не останавливаться в изучении фундаментальных направлений. Если понравится процесс — вы его пройдёте, сами или с чьей-то помощью.
🔥3
#книга
Simon J.D. Prince "Understanding Deep Learning"
Незаслуженно малоизвестная книга. Но это самое лучшее, что в последние годы писалось по глубокому обучению. Материал очень современный (GPT3, диффузионные модели, графовые сети есть). Повествование с основ и до этических проблем, очень широкий охват. Текст и рисунки авторские. Достаточно подробная библиография. Ну разве что примеров кода нет (книга теоретическая). Настоятельно рекомендую!
https://udlbook.github.io/udlbook/
👍6
Forwarded from 🏆 Data Feeling | AI (Aleron Milenkin)
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Библиотека RAPIDS от NVIDIA cделает Pandas в 150 раз быстрее без изменений кода.

Нужно прописать только это:
%load_ext cudf.pandas
import pandas as pd


🤖 Их библиотека RAPIDS cuDF сама определяет, доступна GPU или CPU, и ускоряет обработку.

💪 Колаб чтоб попробовать:
🥳 Репозиторий либы:

@datafeeling
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥41
Forwarded from Generative Ai
X-LLM. Новая библиотека для обучения LLM в экосистеме Huggingface.

Она поддерживает все современные методы (QLoRA, Flash Attention 2, Gradient checkpointing, GPTQ квантизацию, W&B, обучение на нескольких GPU с помощью DeepSpeed, даже каждый чекпоинт сохраняет сразу в Huggingface Hub). Подходит как для быстрого прототипирования, так и для production-ready решений.

Репозиторий, внутри много примеров: https://github.com/BobaZooba/xllm

Colab с обучением 7B модели: ссылка

Open source модель: https://huggingface.co/BobaZooba/Shurale7B-v1

Интерактивная текстовая игра (с моделью выше) с динамическими персонажами и историями: @TaleQuestBot (да, бот в телеграм)
🔥5
Forwarded from эйай ньюз
This media is not supported in your browser
VIEW IN TELEGRAM
🔥EMU VIDEO:
Factorizing Text-to-Video Generation by Explicit Image Conditioning


Сегодня сразу два больших релиза от моих коллег из Meta GenAI! Один из них — опубликовали модель EMU-Video.

Новая модель строится на базе Text-2-image модели Emu, и теперь может генерить 4-секундные видео 512x512 в 16 fps.

Архитектура, грубо:
мы берем pre-trained 2.7B Emu для генерации text-2-image, замораживаем Unet и добавляем в него дополнительные аттеншен слои, которые работают вдоль врменной оси. И тренируем только доп слои, на генерацию видео по тексту.

На вход даём либо картинку + текст, либо только текст (в этом случае картинку генерим с помощью Emu). На выходе — 65 фрейма 512x512.

Если погрузиться в детали, то сначала генерится 16 фреймов, а затем ещё одна модель с такой же архитектурой интерполирует видео до 65 фреймов.

Это теперь SOTA в text-2-video:
✔️ Emu-Video vs Gen-2: победа Emu-Video в 78.5% случаев
✔️Emu-Video vs Pika - победа в 98.5% случаев по оценке кожаных разметчиков.

Сайт проекта
Демо-результаты

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
На kaggle есть курс по Computer Vision. Так вот теперь у него появился практический гайд
https://www.kaggle.com/code/ivanlydkin/computer-vision-course-practical-guide
2