Forwarded from Nicolás Gómez Dávila
Every new generation, in this century, comes in shouting that has something new to do and goes out saying it only has something new to regret.
Home for sale in da UP. Asking price: $5,000,000
Why aren't you in a book club?
Dull Academic Incessant Liturgical Yapping: Philosophical Orations on Order & Reaction
Using these six rules and natural deduction, prove that [C > (C > C] entails C > C
Here's another one. Use any rule system you like:
1. (W ∨ X) ∨ (Y ∨ Z)
2. X → Y
3. ¬Z
∴ W v Y
A solution using a Frege-Hilbert system:
01. (W ∨ X) ∨ (Y ∨ Z)
02. X → Y
03. ¬Z
04. | ~(W v Y) - Assume
05. | ~W & ~Y - 4 DeMorgan's Theorem
06. | ~Y & ~W - 5 Commutation
07. | ~Y - 6 Simplification
08. | ~X - 2,7 Modus Tollens
09. | ~W - 5 Simplification
10. | ~W & ~ X - 8,9 Conjunction
11. | ~(W v X) - 10 DeMorgan's Theorem
12. | Y v Z - 1,11 Disjunctive Syllogism
13. | Z - 7,12 Disjunctive Syllogism
14. | Z & ~Z - 3,13 Conjunction
15. ~~(W v Y) - 4-14 Reductio ad Absurdhum/Indirect Proof
16. - W v Y - 15 Double Negation
A solution using a Fitch system:
01. (W v X) v (Y v Z)
02. X → Y
03. ¬Z
04. | ~(W v Y) - Assume
05. | | W - Assume
06. | | W v Y - 5 vI
07. | | ⊥ - 4,6 ⊥I
08. | ~W - 5-7 ~I
09. | | Y - Assume
10. | | W v Y - 9 vI
11. | | ⊥ - 4,10 ⊥I
12. | ~Y - 9-11 ~I
13. | | W v X - Assume
14. | | | W - Assume
15. | | | ⊥ - 8,14 ⊥I
16. | | | X - Assume
17. | | | Y - 2,16 →E
18. | | | ⊥ - 12,17 ⊥I
19. | | ⊥ - 13,14-15,16-18 vE
20. | | Y v Z - Assume
21. | | | Y - Assume
22. | | | ⊥ - 12,21 ⊥I
23. | | | Z - Assume
24. | | | ⊥ - 3,23 ⊥I
25. | | ⊥ - 20,21-22,23-24 vE
26. | ⊥ - 1,13-19,20-25 vE
27. ~~(W v Y) - 4-26 ~I
28. W v Y - 27 ~E
1. (W ∨ X) ∨ (Y ∨ Z)
2. X → Y
3. ¬Z
∴ W v Y
A solution using a Frege-Hilbert system:
02. X → Y
03. ¬Z
04. | ~(W v Y) - Assume
05. | ~W & ~Y - 4 DeMorgan's Theorem
06. | ~Y & ~W - 5 Commutation
07. | ~Y - 6 Simplification
08. | ~X - 2,7 Modus Tollens
09. | ~W - 5 Simplification
10. | ~W & ~ X - 8,9 Conjunction
11. | ~(W v X) - 10 DeMorgan's Theorem
12. | Y v Z - 1,11 Disjunctive Syllogism
13. | Z - 7,12 Disjunctive Syllogism
14. | Z & ~Z - 3,13 Conjunction
15. ~~(W v Y) - 4-14 Reductio ad Absurdhum/Indirect Proof
16. - W v Y - 15 Double Negation
A solution using a Fitch system:
02. X → Y
03. ¬Z
04. | ~(W v Y) - Assume
05. | | W - Assume
06. | | W v Y - 5 vI
07. | | ⊥ - 4,6 ⊥I
08. | ~W - 5-7 ~I
09. | | Y - Assume
10. | | W v Y - 9 vI
11. | | ⊥ - 4,10 ⊥I
12. | ~Y - 9-11 ~I
13. | | W v X - Assume
14. | | | W - Assume
15. | | | ⊥ - 8,14 ⊥I
16. | | | X - Assume
17. | | | Y - 2,16 →E
18. | | | ⊥ - 12,17 ⊥I
19. | | ⊥ - 13,14-15,16-18 vE
20. | | Y v Z - Assume
21. | | | Y - Assume
22. | | | ⊥ - 12,21 ⊥I
23. | | | Z - Assume
24. | | | ⊥ - 3,23 ⊥I
25. | | ⊥ - 20,21-22,23-24 vE
26. | ⊥ - 1,13-19,20-25 vE
27. ~~(W v Y) - 4-26 ~I
28. W v Y - 27 ~E
Dull Academic Incessant Liturgical Yapping: Philosophical Orations on Order & Reaction
Tomorrow maybe we do FOL problems
Here's an easy set for y'all niggas:
Problem #1: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx
Problem #2: ⊢ ∀xFx v ~∀xFx
Problem #3: ∀x∀yGxy ⊢ ∃xGxx
Problem #1: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx
Problem #2: ⊢ ∀xFx v ~∀xFx
Problem #3: ∀x∀yGxy ⊢ ∃xGxx
Dull Academic Incessant Liturgical Yapping: Philosophical Orations on Order & Reaction
Here's an easy set for y'all niggas: Problem #1: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx Problem #2: ⊢ ∀xFx v ~∀xFx Problem #3: ∀x∀yGxy ⊢ ∃xGxx
Good morning.
Concentrate.
Problem 1: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx
Frege system:
01. ∀x(Fx → Gx)
02. ∃xFx
03. Fa - 2 Existential Instantiation
04. Fa →Ga - 1 Universal Instantiation
05. Ga - 3,4 Modus Ponens
06. ∃xGx - 5 Existential Generalization
Fitch system:
01. ∀x(Fx → Gx)
02. ∃xFx
03. | Fa - Assumption
04. | Fa →Ga - 1 ∀E
05. | Ga - 3,4 →E
06. | ∃x(Gx) - 5 ∃I
07. ∃x(Gx) - 2,3-6 ∃E
Concentrate.
Problem 1: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx
Frege system:
02. ∃xFx
03. Fa - 2 Existential Instantiation
04. Fa →Ga - 1 Universal Instantiation
05. Ga - 3,4 Modus Ponens
06. ∃xGx - 5 Existential Generalization
Fitch system:
02. ∃xFx
03. | Fa - Assumption
04. | Fa →Ga - 1 ∀E
05. | Ga - 3,4 →E
06. | ∃x(Gx) - 5 ∃I
07. ∃x(Gx) - 2,3-6 ∃E
Dull Academic Incessant Liturgical Yapping: Philosophical Orations on Order & Reaction
Here's an easy set for y'all niggas: Problem #1: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx Problem #2: ⊢ ∀xFx v ~∀xFx Problem #3: ∀x∀yGxy ⊢ ∃xGxx
Problem #2: ⊢ ∀xFx v ~∀xFx
Frege system:
01. | ~(∀xFx v ~∀xFx) - Assume
02. | ~∀xFx & ~~∀xFx - 1, DeMorgan's Theorem
03. ~~(∀xFx v ~∀xFx) - 1-2 Indirect Proof
04. ∀xFx v ~∀xFx - Double Negation
Fitch system:
01. | ~(∀xFx ∨ ~∀xFx) - Assume
02. | | ∀xFx - Assume
03. | | ∀xFx ∨ ~∀xFx - 2 vI
04. | | ⊥ - 1,3 ⊥I
05. | ~∀xFx - 2-4 ~I
06. | ∀xFx ∨ ~∀xFx - 5 vI
07. | ⊥ - 1,6 ⊥I
08. ~~(∀xFx ∨ ~∀xFx) - 1-7 ~I
09. (∀xFx ∨ ~∀xFx) - 8 ~E
Frege system:
02. | ~∀xFx & ~~∀xFx - 1, DeMorgan's Theorem
03. ~~(∀xFx v ~∀xFx) - 1-2 Indirect Proof
04. ∀xFx v ~∀xFx - Double Negation
Fitch system:
02. | | ∀xFx - Assume
03. | | ∀xFx ∨ ~∀xFx - 2 vI
04. | | ⊥ - 1,3 ⊥I
05. | ~∀xFx - 2-4 ~I
06. | ∀xFx ∨ ~∀xFx - 5 vI
07. | ⊥ - 1,6 ⊥I
08. ~~(∀xFx ∨ ~∀xFx) - 1-7 ~I
09. (∀xFx ∨ ~∀xFx) - 8 ~E
Dull Academic Incessant Liturgical Yapping: Philosophical Orations on Order & Reaction
Here's an easy set for y'all niggas: Problem #1: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx Problem #2: ⊢ ∀xFx v ~∀xFx Problem #3: ∀x∀yGxy ⊢ ∃xGxx
Problem #3: ∀x∀yGxy ⊢ ∃xGxx
Frege system:
01. ∀x∀yGxy
02. ∀yGay - 1 Universal Instantiation
03. Gaa - 2 Universal Instantiation
04. ∃xGxx - 3 Existential Generalization
Fitch system:
01. ∀x∀yGxy
02. ∀yGay - 1 ∀E
03. Gaa - 2 ∀E
04. ∃xGxx - 3 ∃I
Frege system:
02. ∀yGay - 1 Universal Instantiation
03. Gaa - 2 Universal Instantiation
04. ∃xGxx - 3 Existential Generalization
Fitch system:
02. ∀yGay - 1 ∀E
03. Gaa - 2 ∀E
04. ∃xGxx - 3 ∃I