Forwarded from Интернет-аналитика // Алексей Никушин (Алексей Никушин)
Материалы по экспериментам от Романа Поборчего.
Начнем с простого - A/B-тесты для "нематематиков" о методах грамотного оценивания результатов a/b-тестирования. Особое внимание уделяется вопросу о том, на какую целевую метрику ориентироваться при проведении маркетинговых экспериментов.
Продолжим вопросами дизайна эксперимента. Уже пора задуматься о том, на каких допущениях основан эксперимент: по-настоящему случайное распределение пользователей, независимость измеряемых событий и т.д.
Бывали ситуации, когда вы или вам говорили, что данных недостаточно для решения? Часто это действительно так, но нередко всё дело в поломках системы экспериментов и учёта пользовательской статистики. Рассмотрим типичные поломки, которые встречаются, и у вас появится возможность, вернувшись на рабочее место найти свои.
И на последок - грабли А/В-тестирования. Все изменения в сервисе проходят через эксперимент на пользователях. Выкатываем только то, что показывает значимое улучшение целевой метрики. Да, у нас есть целевая метрика. Да, мы всё знаем про статистическую значимость. Но почему целевая метрика нашего сервиса сегодня находится точно на том же уровне, что и год назад? Разбираемся
= = =
Но мы пошли дальше, нашли "белые пятна" в доступных материалах (не именно этих, а вообще) и закроем их на нашей конференции по продуктовой аналитике 8-9 апреля.
Уже знакомый вам Роман Поборчий расскажет о том, каковы этапы эволюции in-house системы экспериментов в любой компании. Это важно понимать хотя бы потому, что на маленьком и большом трафике абсолютно разные подходы к проведению экспериментов + к этому, Искандер Мирмахмадов, EXPF расскажет как проверять качество систем сплитования трафика на платформах экспериментов с теорией, кейсам и демонстрацией кода на Python. И у вас все сложится в единую систему.
Кроме этого, Андрей Кузнецов, Lead Core Analytics ВКонтакте, готовит лекцию о том, почему регрессионные модели в а/б-тестах — это супер полезно. Он математик и ему есть что сказать. И как вишенка на торте - Кирилл Шмидт, lead product analyst, Wrike. Поговорим с ним о том, что делать, когда а/б-тест невозможен: выборки слишком малы, нет ресурсов, когда вообще не запускать эксперимент.
Ждем вас на нашей конференции уже через 3 недели: https://aha.matemarketing.ru/
@internetanalytics
Начнем с простого - A/B-тесты для "нематематиков" о методах грамотного оценивания результатов a/b-тестирования. Особое внимание уделяется вопросу о том, на какую целевую метрику ориентироваться при проведении маркетинговых экспериментов.
Продолжим вопросами дизайна эксперимента. Уже пора задуматься о том, на каких допущениях основан эксперимент: по-настоящему случайное распределение пользователей, независимость измеряемых событий и т.д.
Бывали ситуации, когда вы или вам говорили, что данных недостаточно для решения? Часто это действительно так, но нередко всё дело в поломках системы экспериментов и учёта пользовательской статистики. Рассмотрим типичные поломки, которые встречаются, и у вас появится возможность, вернувшись на рабочее место найти свои.
И на последок - грабли А/В-тестирования. Все изменения в сервисе проходят через эксперимент на пользователях. Выкатываем только то, что показывает значимое улучшение целевой метрики. Да, у нас есть целевая метрика. Да, мы всё знаем про статистическую значимость. Но почему целевая метрика нашего сервиса сегодня находится точно на том же уровне, что и год назад? Разбираемся
= = =
Но мы пошли дальше, нашли "белые пятна" в доступных материалах (не именно этих, а вообще) и закроем их на нашей конференции по продуктовой аналитике 8-9 апреля.
Уже знакомый вам Роман Поборчий расскажет о том, каковы этапы эволюции in-house системы экспериментов в любой компании. Это важно понимать хотя бы потому, что на маленьком и большом трафике абсолютно разные подходы к проведению экспериментов + к этому, Искандер Мирмахмадов, EXPF расскажет как проверять качество систем сплитования трафика на платформах экспериментов с теорией, кейсам и демонстрацией кода на Python. И у вас все сложится в единую систему.
Кроме этого, Андрей Кузнецов, Lead Core Analytics ВКонтакте, готовит лекцию о том, почему регрессионные модели в а/б-тестах — это супер полезно. Он математик и ему есть что сказать. И как вишенка на торте - Кирилл Шмидт, lead product analyst, Wrike. Поговорим с ним о том, что делать, когда а/б-тест невозможен: выборки слишком малы, нет ресурсов, когда вообще не запускать эксперимент.
Ждем вас на нашей конференции уже через 3 недели: https://aha.matemarketing.ru/
@internetanalytics
Как внешниие факторы влияют на эксперименты и почему важно запускать долгосрочные тесты.
via @ABtesting
via @ABtesting
Использование модели кластеризации K-means для создания однородных групп людей при A/B-тестировании.
via @ABtesting
via @ABtesting
Как анализировать A/B-эксперименты с использованием Bayesian Expected Loss и как его рассчитывать.
via @ABtesting
via @ABtesting
Как говорят американцы: Кто SQL не знает, тот всю жизнь в экселе отчеты считает! 😎
Новый курс по SQL от Глеба Михайлова, который уже стал хитом на Udemy, поможет вывести твой SQL на новый уровень.
Это SQL именно для анализа данных, и весь SQL Глеб пишет в Jupyter ноутбуке. Это очень удобный подход, потому что весь код хранится в одном месте. А так же можно быстро досчитать что-то в пандас и построить график.
Этот курс рассчитан на тех, кто уже что-то знает об аналитике и представяет что такое питон. Если ты знаешь SQL, но не знаешь питон — этот курс тоже будет тебе очень полезен. Совсем новички тоже смогут пройти курс — разобраться с питоном и Jupyter можно на ходу.
Ссылка заряжена хорошей скидочкой. Усиль свой SQL! 🔥
Новый курс по SQL от Глеба Михайлова, который уже стал хитом на Udemy, поможет вывести твой SQL на новый уровень.
Это SQL именно для анализа данных, и весь SQL Глеб пишет в Jupyter ноутбуке. Это очень удобный подход, потому что весь код хранится в одном месте. А так же можно быстро досчитать что-то в пандас и построить график.
Этот курс рассчитан на тех, кто уже что-то знает об аналитике и представяет что такое питон. Если ты знаешь SQL, но не знаешь питон — этот курс тоже будет тебе очень полезен. Совсем новички тоже смогут пройти курс — разобраться с питоном и Jupyter можно на ходу.
Ссылка заряжена хорошей скидочкой. Усиль свой SQL! 🔥
Udemy
Online Courses - Learn Anything, On Your Schedule | Udemy
Udemy is an online learning and teaching marketplace with over 250,000 courses and 80 million students. Learn programming, marketing, data science and more.
Об алгоритмах многоруких бандитов и сравнение с классическим A/B-тестированием:
https://github.com/raffg/multi_armed_bandit
via @ABtesting
https://github.com/raffg/multi_armed_bandit
via @ABtesting
Как проводят эксперименты в Tinder.
Phoenix - платформа для проведения экспериментов:
https://medium.com/tinder-engineering/phoenix-tinders-testing-platform-part-iii-520728b9537
via @ABtesting
Phoenix - платформа для проведения экспериментов:
https://medium.com/tinder-engineering/phoenix-tinders-testing-platform-part-iii-520728b9537
via @ABtesting
Ускорение A/B-тестирования с помощью CUPED от Microsoft, метода уменьшения дисперсии с использованием ранее существовавших данных.
via @ABtesting
via @ABtesting
Как автоматизировать А/В-тестирование и сократить время аналитика на полный цикл до 3-х часов? Тут ребята из Data Science Delivery Club рассказали о своем опыте: отказе от Firebase Console, экспериментах и важных метриках оценки результата.
via @ABtesting
via @ABtesting
Хабр
Время — деньги: анализируй А/В-тесты разумно
Всем привет! Меня зовут Кирилл, я работаю в продуктовом направлении команды Data Science. Сегодня я расскажу о том, как мы в Delivery Club автоматизируем A/B-тестирование. Основная часть статьи...
Forwarded from Product Analytics
Принципы работы с данными от Uber:
https://eng.uber.com/ubers-journey-toward-better-data-culture-from-first-principles/
via @ProductAnalytics
https://eng.uber.com/ubers-journey-toward-better-data-culture-from-first-principles/
via @ProductAnalytics
Как проводят эксперименты в Facebook.
AX - платформа для проведения адаптивных экспериментов.
Видео | GitHub
via @ABtesting
AX - платформа для проведения адаптивных экспериментов.
Видео | GitHub
via @ABtesting
Шпаргалка по параметрическим и непараметрическим критериям проверки статистических гипотез:
https://rstudio-pubs-static.s3.amazonaws.com/340931_720cbfff44814347b2d39c06d174e531.html
via @ABtesting
https://rstudio-pubs-static.s3.amazonaws.com/340931_720cbfff44814347b2d39c06d174e531.html
via @ABtesting
Forwarded from Datalytics
Неплохой бесплатный курс по по A/B-тестированиям. Без сильного технического фарша и примеров кода, но раскрывающий основные важные моменты:
— Чем классические частотные подходы к расчёту вероятности отличаются от байесовских
— Как рассчитывается статистическая значимость и почему её расчёт важен в ходе оценки результатов A/B-тестирования
— Чем отличается статистическая мощность от статистической значимости
— Как правильно сделать сплит трафика
— Почему важно правильно аттрибуцировать конверсию при маркетинговых экспериментах
— Сравнение подходов тестирования на клиенте (client-side) и на сервере (server-side)
— Как анализировать и интерпретировать A/B-тесты
https://www.dynamicyield.com/course/testing-and-optimization/
— Чем классические частотные подходы к расчёту вероятности отличаются от байесовских
— Как рассчитывается статистическая значимость и почему её расчёт важен в ходе оценки результатов A/B-тестирования
— Чем отличается статистическая мощность от статистической значимости
— Как правильно сделать сплит трафика
— Почему важно правильно аттрибуцировать конверсию при маркетинговых экспериментах
— Сравнение подходов тестирования на клиенте (client-side) и на сервере (server-side)
— Как анализировать и интерпретировать A/B-тесты
https://www.dynamicyield.com/course/testing-and-optimization/
Mastercard Dynamic Yield
A/B Testing & Optimization Course — XP² Learning Center
Join this free online course to learn the fundumentals of A/B testing and conversion optimization, to help you grow your business KPIs.
О расстановке приоритетов в экспериментах:
https://davidleemannheim.medium.com/how-do-you-prioritize-experiments-b97bd9d1c8ae
via @ABtesting
https://davidleemannheim.medium.com/how-do-you-prioritize-experiments-b97bd9d1c8ae
via @ABtesting
Python’s Fitter library - библиотека позволяет выбрать параметры распределения, которые наилучшим образом отражают предэкспериментальные данные.
via @ABtesting
via @ABtesting
Еще одна хорошая статья о байесовских A/B-тестах. В этот раз о способах реализации и масштабировании от специалистов Wix.com.
via @ABtesting
via @ABtesting