Machinelearning – Telegram
383K subscribers
4.46K photos
860 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🤖 MiniHack is a sandbox framework for easily designing rich and diverse environments for Reinforcement Learning

Github: https://github.com/facebookresearch/minihack

Facebook AI: https://ai.facebook.com/blog/minihack-a-new-sandbox-for-open-ended-reinforcement-learning/

Paper: https://arxiv.org/abs/2109.13202

Documentation: https://minihack.readthedocs.io/

@ai_machinelearning_big_data
🚀 Fast bottom-up method that jointly detects over 100 keypoints on humans or objects

Github: https://github.com/duncanzauss/keypoint_communities

Paper: https://arxiv.org/abs/2110.00988v1

Dataset: https://paperswithcode.com/dataset/coco

@ai_machinelearning_big_data
🧷 SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.

Github: https://github.com/slundberg/shap

Paper: https://arxiv.org/abs/2110.03309v1

@ai_machinelearning_big_data
LightSeq: A High Performance Library for Sequence Processing and Generation

Github: https://github.com/bytedance/lightseq

Paper: https://arxiv.org/abs/2110.05722v1

A Guide of LightSeq Training: https://github.com/bytedance/lightseq/blob/master/docs/guide.md

@ai_machinelearning_big_data
👍1
👍1
🍾 Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Github: https://github.com/jbeomlee93/rib

Paper: http://arxiv.org/abs/2110.06530

Dataset: https://paperswithcode.com/dataset/coco

@ai_machinelearning_big_data
📄 HRFormer: High-Resolution Transformer for Dense Prediction, NeurIPS 2021

Github: https://github.com/HRNet/HRFormer

Paper: https://arxiv.org/abs/2110.09408v1

Dataset: https://paperswithcode.com/dataset/coco

@ai_machinelearning_big_data
⚙️SecureBoost+ : A High Performance Gradient Boosting Tree Framework for Large Scale Vertical Federated Learning

Github: https://github.com/FederatedAI/FATE

Paper: https://arxiv.org/abs/2110.10927v1

@ai_machinelearning_big_data
🚀 NAS-FCOS: Fast Neural Architecture Search for Object Detection

Github: https://github.com/Lausannen/NAS-FCOS

Paper: https://arxiv.org/abs/2110.12423v1


@ai_machinelearning_big_data
👍1
🌲 Revisiting randomized choices in isolation forests

Github: https://github.com/david-cortes/isotree

Paper: https://arxiv.org/abs/2110.13402v1

@ai_machinelearning_big_data