TSM: Temporal Shift Module for Efficient Video Understanding
Github: https://github.com/princeton-nlp/made
Website: https://hanlab.mit.edu/projects/tsm/
Paper: https://arxiv.org/abs/1811.08383
Dataset: https://paperswithcode.com/dataset/squad
@ai_machinelearning_big_data
Github: https://github.com/princeton-nlp/made
Website: https://hanlab.mit.edu/projects/tsm/
Paper: https://arxiv.org/abs/1811.08383
Dataset: https://paperswithcode.com/dataset/squad
@ai_machinelearning_big_data
🚀 Fast bottom-up method that jointly detects over 100 keypoints on humans or objects
Github: https://github.com/duncanzauss/keypoint_communities
Paper: https://arxiv.org/abs/2110.00988v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Github: https://github.com/duncanzauss/keypoint_communities
Paper: https://arxiv.org/abs/2110.00988v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
🔍 FLAN: More generalizable Language Models with Instruction Fine-Tuning
Google research: https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html
Github: https://github.com/google-research/FLAN
Paper: https://arxiv.org/abs/2109.01652
@ai_machinelearning_big_data
Google research: https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html
Github: https://github.com/google-research/FLAN
Paper: https://arxiv.org/abs/2109.01652
@ai_machinelearning_big_data
🎯 Darts: User-Friendly Modern Machine Learning for Time Series
Github: https://github.com/unit8co/darts
Paper: https://arxiv.org/abs/2110.03224v1
Examples: https://unit8co.github.io/darts/examples.html
@ai_machinelearning_big_data
Github: https://github.com/unit8co/darts
Paper: https://arxiv.org/abs/2110.03224v1
Examples: https://unit8co.github.io/darts/examples.html
@ai_machinelearning_big_data
➡️ Pytorch Transfer Learning Library
Github: https://github.com/thuml/Transfer-Learning-Library
Paper: https://arxiv.org/abs/2110.02578v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
Github: https://github.com/thuml/Transfer-Learning-Library
Paper: https://arxiv.org/abs/2110.02578v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
🧷 SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.
Github: https://github.com/slundberg/shap
Paper: https://arxiv.org/abs/2110.03309v1
@ai_machinelearning_big_data
Github: https://github.com/slundberg/shap
Paper: https://arxiv.org/abs/2110.03309v1
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
🌲 Learning High-Speed Flight in the Wild
Github: https://github.com/uzh-rpg/agile_autonomy
Project: http://rpg.ifi.uzh.ch/AgileAutonomy.html
Paper: http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
Dataset: https://zenodo.org/record/5517791#.YV2zkGNfhhE
@ai_machinelearning_big_data
Github: https://github.com/uzh-rpg/agile_autonomy
Project: http://rpg.ifi.uzh.ch/AgileAutonomy.html
Paper: http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
Dataset: https://zenodo.org/record/5517791#.YV2zkGNfhhE
@ai_machinelearning_big_data
👍1
LightSeq: A High Performance Library for Sequence Processing and Generation
Github: https://github.com/bytedance/lightseq
Paper: https://arxiv.org/abs/2110.05722v1
A Guide of LightSeq Training: https://github.com/bytedance/lightseq/blob/master/docs/guide.md
@ai_machinelearning_big_data
Github: https://github.com/bytedance/lightseq
Paper: https://arxiv.org/abs/2110.05722v1
A Guide of LightSeq Training: https://github.com/bytedance/lightseq/blob/master/docs/guide.md
@ai_machinelearning_big_data
👍1
📊ByteTrack: Multi-Object Tracking by Associating Every Detection Box
Github: https://github.com/ifzhang/ByteTrack
Paper: https://arxiv.org/abs/2110.06864
Dataset: https://paperswithcode.com/dataset/motchallenge
@ai_machinelearning_big_data
Github: https://github.com/ifzhang/ByteTrack
Paper: https://arxiv.org/abs/2110.06864
Dataset: https://paperswithcode.com/dataset/motchallenge
@ai_machinelearning_big_data
👍1
🍾 Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)
Github: https://github.com/jbeomlee93/rib
Paper: http://arxiv.org/abs/2110.06530
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Github: https://github.com/jbeomlee93/rib
Paper: http://arxiv.org/abs/2110.06530
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
📖 Bayesian Optimization Book 2021
Book: https://bayesoptbook.com
Github: https://github.com/bayesoptbook/bayesoptbook.github.io
@ai_machinelearning_big_data
Book: https://bayesoptbook.com
Github: https://github.com/bayesoptbook/bayesoptbook.github.io
@ai_machinelearning_big_data
❤1
ESPnet2-TTS: Extending the Edge of TTS Research
Github: https://github.com/espnet/espnet
Docs: https://espnet.github.io/espnet/
Paper: https://arxiv.org/abs/2110.07840v1
Dataset: https://paperswithcode.com/dataset/vctk
@ai_machinelearning_big_data
Github: https://github.com/espnet/espnet
Docs: https://espnet.github.io/espnet/
Paper: https://arxiv.org/abs/2110.07840v1
Dataset: https://paperswithcode.com/dataset/vctk
@ai_machinelearning_big_data
🧵 abess: Fast Best-Subset Selection in Python and R
Github: https://github.com/abess-team/abess
Docs: https://abess.readthedocs.io/en/latest/Tutorial/index.html
Paper: https://arxiv.org/abs/2110.09697v1
@ai_machinelearning_big_data
Github: https://github.com/abess-team/abess
Docs: https://abess.readthedocs.io/en/latest/Tutorial/index.html
Paper: https://arxiv.org/abs/2110.09697v1
@ai_machinelearning_big_data
📄 HRFormer: High-Resolution Transformer for Dense Prediction, NeurIPS 2021
Github: https://github.com/HRNet/HRFormer
Paper: https://arxiv.org/abs/2110.09408v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Github: https://github.com/HRNet/HRFormer
Paper: https://arxiv.org/abs/2110.09408v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
⚙️SecureBoost+ : A High Performance Gradient Boosting Tree Framework for Large Scale Vertical Federated Learning
Github: https://github.com/FederatedAI/FATE
Paper: https://arxiv.org/abs/2110.10927v1
@ai_machinelearning_big_data
Github: https://github.com/FederatedAI/FATE
Paper: https://arxiv.org/abs/2110.10927v1
@ai_machinelearning_big_data
🅱️ Bi-directional Image and Text Generation
Github: https://github.com/researchmm/generate-it
Paper: https://arxiv.org/abs/2110.09753v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Github: https://github.com/researchmm/generate-it
Paper: https://arxiv.org/abs/2110.09753v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
📌 PyTorch: Transfer Learning and Image Classification
https://www.pyimagesearch.com/2021/10/11/pytorch-transfer-learning-and-image-classification/
Dataset: https://www.tensorflow.org/datasets/catalog/tf_flowers
@ai_machinelearning_big_data
https://www.pyimagesearch.com/2021/10/11/pytorch-transfer-learning-and-image-classification/
Dataset: https://www.tensorflow.org/datasets/catalog/tf_flowers
@ai_machinelearning_big_data
🚀 NAS-FCOS: Fast Neural Architecture Search for Object Detection
Github: https://github.com/Lausannen/NAS-FCOS
Paper: https://arxiv.org/abs/2110.12423v1
@ai_machinelearning_big_data
Github: https://github.com/Lausannen/NAS-FCOS
Paper: https://arxiv.org/abs/2110.12423v1
@ai_machinelearning_big_data
👍1
🌲 Revisiting randomized choices in isolation forests
Github: https://github.com/david-cortes/isotree
Paper: https://arxiv.org/abs/2110.13402v1
@ai_machinelearning_big_data
Github: https://github.com/david-cortes/isotree
Paper: https://arxiv.org/abs/2110.13402v1
@ai_machinelearning_big_data
😃 GoEmotions: A Dataset for Fine-Grained Emotion Classification
Github: https://github.com/google-research/google-research/tree/master/goemotions
Google AI: https://ai.googleblog.com/2021/10/goemotions-dataset-for-fine-grained.html
@ai_machinelearning_big_data
Github: https://github.com/google-research/google-research/tree/master/goemotions
Google AI: https://ai.googleblog.com/2021/10/goemotions-dataset-for-fine-grained.html
@ai_machinelearning_big_data
👍1
🪛 OneFlow is a performance-centered and open-source deep learning framework.
Github: https://github.com/Oneflow-Inc/oneflow
Paper: https://arxiv.org/abs/2110.15032v2
@ai_machinelearning_big_data
Github: https://github.com/Oneflow-Inc/oneflow
Paper: https://arxiv.org/abs/2110.15032v2
@ai_machinelearning_big_data