Machinelearning – Telegram
383K subscribers
4.45K photos
859 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
SuperGAT

A self-supervised graph attention network (SuperGAT), an improved graph attention model for noisy graph

Code: https://github.com/dongkwan-kim/SuperGAT

Paper: https://arxiv.org/abs/2204.04879v1

Dataset: https://paperswithcode.com/dataset/ogb

@ai_machinelearning_big_data
🔥9👍2
🔥 DALL·E 2

DALL·E 2 is a new AI system that can create realistic images and art from a denoscription in natural language.

Openai: https://openai.com/dall-e-2/

Paper: https://cdn.openai.com/papers/dall-e-2.pdf

Video: https://vimeo.com/692375454

@ai_machinelearning_big_data
🔥45👍3👎1
🔗 Unsupervised Image-to-Image Translation with Generative Prior

A novel framework GP-UNIT, to improve the overall quality and applicability of the translation algorithm

Github: https://github.com/williamyang1991/gp-unit

Paper: https://arxiv.org/abs/2204.03641v1

Datasett: https://paperswithcode.com/dataset/celeba-hq

@ai_machinelearning_big_data
👍10🔥31
✏️ Sat2lod2: A Software For Automated Lod-2 Modeling From Satellite-Derived Orthophoto And Digital Surface Model

The proposed method starts building detection results through a deep learning-based detector and vectorizes individual segments into polygons using a “three-step” polygon extraction method

Github: https://github.com/gdaosu/lod2buildingmodel

Paper: https://arxiv.org/abs/2204.04139v1

Datasett: https://drive.google.com/file/d/1rA7SRPbSYFJwOBc7IfXxBgmUroTOZIOF/view?usp=sharing

Video: https://youtu.be/Nn4OABsEOXk

@ai_machinelearning_big_data
👍72
✏️ Sat2lod2: A Software For Automated Lod-2 Modeling From Satellite-Derived Orthophoto And Digital Surface Model

The proposed method starts building detection results through a deep learning-based detector and vectorizes individual segments into polygons using a “three-step” polygon extraction method

Github: https://github.com/jingkang50/openood

Paper: https://arxiv.org/abs/2204.05306v1

Dataset: https://entuedu-my.sharepoint.com/:f:/g/personal/jingkang001_e_ntu_edu_sg/Eso7IDKUKQ9AoY7hm9IU2gIBMWNnWGCYPwClpH0TASRLmg?e=iEYhXO

More tutorials: https://github.com/Jingkang50/OpenOOD/wiki/Get-Started

@ai_machinelearning_big_data
👍7
👍8
OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022)

Given a body shape with SMPL or STAR topology (in blue), we infer the underlying skeleton (in yellow).

Code: https://arxiv.org/abs/2204.10129v1

Paper: https://arxiv.org/abs/2204.09838v1

Dataset: https://paperswithcode.com/dataset/agora

@ArtificialIntelligencedl
👍12
Яндекс открывает резидентскую программу по машинному обучению ML Residency.

Ее участники будут проводить исследования и эксперименты в ML, писать научные работы и посещать ведущие конференции.

Подать заявку могут как студенты и аспиранты вузов, так и опытные специалисты в профильных областях: математике, физике, компьютерных науках. Работа в проекте оплачивается.

Узнать подробнее можно здесь.
👍23👎11
👍9🔥1
👁 An Extendable, Efficient and Effective Transformer-based Object Detector

Github: https://github.com/naver-ai/vidt

Paper: https://arxiv.org/abs/2204.07962v1

Dataset: https://paperswithcode.com/dataset/coco

@ai_machinelearning_big_data
👍101
🌐 DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings


Code: https://github.com/voidism/diffcse

Paper: https://arxiv.org/abs/2204.10298v1

Dataset: https://paperswithcode.com/dataset/sst

@ai_machinelearning_big_data
👍5👎1