🔦 YOLOV5-ti-lite Object Detection Models
Code: https://github.com/texasinstruments/edgeai-yolov5
Paper: https://arxiv.org/abs/2204.06806v1
Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
Code: https://github.com/texasinstruments/edgeai-yolov5
Paper: https://arxiv.org/abs/2204.06806v1
Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
GitHub
GitHub - TexasInstruments/edgeai-yolov5: This repository has been deprecated. Suggest to use edgeai-mmdetection in https://git…
This repository has been deprecated. Suggest to use edgeai-mmdetection in https://github.com/TexasInstruments/edgeai-tensorlab - TexasInstruments/edgeai-yolov5
👍6
✏️ Sat2lod2: A Software For Automated Lod-2 Modeling From Satellite-Derived Orthophoto And Digital Surface Model
The proposed method starts building detection results through a deep learning-based detector and vectorizes individual segments into polygons using a “three-step” polygon extraction method
Github: https://github.com/gdaosu/lod2buildingmodel
Paper: https://arxiv.org/abs/2204.04139v1
Datasett: https://drive.google.com/file/d/1rA7SRPbSYFJwOBc7IfXxBgmUroTOZIOF/view?usp=sharing
Video: https://youtu.be/Nn4OABsEOXk
@ai_machinelearning_big_data
The proposed method starts building detection results through a deep learning-based detector and vectorizes individual segments into polygons using a “three-step” polygon extraction method
Github: https://github.com/gdaosu/lod2buildingmodel
Paper: https://arxiv.org/abs/2204.04139v1
Datasett: https://drive.google.com/file/d/1rA7SRPbSYFJwOBc7IfXxBgmUroTOZIOF/view?usp=sharing
Video: https://youtu.be/Nn4OABsEOXk
@ai_machinelearning_big_data
👍7❤2
🔎 CenterNet++ for Object Detection
Code: https://github.com/Duankaiwen/PyCenterNet
Paper: https://arxiv.org/abs/2204.08394v1
Dataset: https://paperswithcode.com/dataset/coco
Code: https://github.com/Duankaiwen/PyCenterNet
Paper: https://arxiv.org/abs/2204.08394v1
Dataset: https://paperswithcode.com/dataset/coco
👍6
✏️ Sat2lod2: A Software For Automated Lod-2 Modeling From Satellite-Derived Orthophoto And Digital Surface Model
The proposed method starts building detection results through a deep learning-based detector and vectorizes individual segments into polygons using a “three-step” polygon extraction method
Github: https://github.com/jingkang50/openood
Paper: https://arxiv.org/abs/2204.05306v1
Dataset: https://entuedu-my.sharepoint.com/:f:/g/personal/jingkang001_e_ntu_edu_sg/Eso7IDKUKQ9AoY7hm9IU2gIBMWNnWGCYPwClpH0TASRLmg?e=iEYhXO
More tutorials: https://github.com/Jingkang50/OpenOOD/wiki/Get-Started
@ai_machinelearning_big_data
The proposed method starts building detection results through a deep learning-based detector and vectorizes individual segments into polygons using a “three-step” polygon extraction method
Github: https://github.com/jingkang50/openood
Paper: https://arxiv.org/abs/2204.05306v1
Dataset: https://entuedu-my.sharepoint.com/:f:/g/personal/jingkang001_e_ntu_edu_sg/Eso7IDKUKQ9AoY7hm9IU2gIBMWNnWGCYPwClpH0TASRLmg?e=iEYhXO
More tutorials: https://github.com/Jingkang50/OpenOOD/wiki/Get-Started
@ai_machinelearning_big_data
👍7
Understanding Engagement from Video Screengrabs
Code: https://github.com/wanghewei16/video-engagement-analysis
Paper: https://arxiv.org/abs/2204.06454v1
The data source: https://github.com/e-drishti/wacv2016.
@ai_machinelearning_big_data
Code: https://github.com/wanghewei16/video-engagement-analysis
Paper: https://arxiv.org/abs/2204.06454v1
The data source: https://github.com/e-drishti/wacv2016.
@ai_machinelearning_big_data
👍4
✔️ Localization Distillation for Dense Object Detection
Github: https://github.com/HikariTJU/LD
Paper: https://arxiv.org/abs/2102.12252
Datasett: https://paperswithcode.com/dataset/dota
@ai_machinelearning_big_data
Github: https://github.com/HikariTJU/LD
Paper: https://arxiv.org/abs/2102.12252
Datasett: https://paperswithcode.com/dataset/dota
@ai_machinelearning_big_data
👍8
OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022)
Given a body shape with SMPL or STAR topology (in blue), we infer the underlying skeleton (in yellow).
Code: https://arxiv.org/abs/2204.10129v1
Paper: https://arxiv.org/abs/2204.09838v1
Dataset: https://paperswithcode.com/dataset/agora
@ArtificialIntelligencedl
Given a body shape with SMPL or STAR topology (in blue), we infer the underlying skeleton (in yellow).
Code: https://arxiv.org/abs/2204.10129v1
Paper: https://arxiv.org/abs/2204.09838v1
Dataset: https://paperswithcode.com/dataset/agora
@ArtificialIntelligencedl
👍12
🔩 Glass Segmentation with RGB-Thermal Image Pairs
Github: https://github.com/dong-huo/rgb-t-glass-segmentation
Paper: https://arxiv.org/abs/2204.05453v2
Datasett: https://drive.google.com/file/d/1ysG04qGmnZv7UaybZUuyybaJYJLUkNHX/view?usp=sharing
@ai_machinelearning_big_data
Github: https://github.com/dong-huo/rgb-t-glass-segmentation
Paper: https://arxiv.org/abs/2204.05453v2
Datasett: https://drive.google.com/file/d/1ysG04qGmnZv7UaybZUuyybaJYJLUkNHX/view?usp=sharing
@ai_machinelearning_big_data
👍8
Яндекс открывает резидентскую программу по машинному обучению ML Residency.
Ее участники будут проводить исследования и эксперименты в ML, писать научные работы и посещать ведущие конференции.
Подать заявку могут как студенты и аспиранты вузов, так и опытные специалисты в профильных областях: математике, физике, компьютерных науках. Работа в проекте оплачивается.
Узнать подробнее можно здесь.
Ее участники будут проводить исследования и эксперименты в ML, писать научные работы и посещать ведущие конференции.
Подать заявку могут как студенты и аспиранты вузов, так и опытные специалисты в профильных областях: математике, физике, компьютерных науках. Работа в проекте оплачивается.
Узнать подробнее можно здесь.
👍23👎11
🌟 Parametric Distributionally Robust Optimization
Github: https://github.com/pmichel31415/P-DRO
Paper: https://arxiv.org/abs/2204.06340v1
Datasett: https://paperswithcode.com/dataset/celeba
@ai_machinelearning_big_data
Github: https://github.com/pmichel31415/P-DRO
Paper: https://arxiv.org/abs/2204.06340v1
Datasett: https://paperswithcode.com/dataset/celeba
@ai_machinelearning_big_data
👍15
📲 Deep-significance: Easy and Better Significance Testing for Deep Neural Networks
Github: https://github.com/Kaleidophon/deep-significance
Paper: https://arxiv.org/abs/2204.06815v1
Examples: https://github.com/Kaleidophon/deep-significance#examples
@ai_machinelearning_big_data
Github: https://github.com/Kaleidophon/deep-significance
Paper: https://arxiv.org/abs/2204.06815v1
Examples: https://github.com/Kaleidophon/deep-significance#examples
@ai_machinelearning_big_data
👍9🔥1
🤖 Transformer-Rankers
Transformer-rankers is a library to conduct ranking experiments with transformers.
Code: https://github.com/Guzpenha/transformer_rankers
Paper: https://arxiv.org/abs/2204.10558v1
Colab: https://colab.research.google.com/drive/1wGmaO3emC7Sg-tA7nGehIQ2vjOLN9S5e?usp=sharing
Transformer-rankers is a library to conduct ranking experiments with transformers.
Code: https://github.com/Guzpenha/transformer_rankers
Paper: https://arxiv.org/abs/2204.10558v1
Colab: https://colab.research.google.com/drive/1wGmaO3emC7Sg-tA7nGehIQ2vjOLN9S5e?usp=sharing
GitHub
GitHub - Guzpenha/transformer_rankers: A library to conduct ranking experiments with transformers.
A library to conduct ranking experiments with transformers. - Guzpenha/transformer_rankers
👍6😁1
👁 An Extendable, Efficient and Effective Transformer-based Object Detector
Github: https://github.com/naver-ai/vidt
Paper: https://arxiv.org/abs/2204.07962v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Github: https://github.com/naver-ai/vidt
Paper: https://arxiv.org/abs/2204.07962v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
👍10❤1
🌐 DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings
Code: https://github.com/voidism/diffcse
Paper: https://arxiv.org/abs/2204.10298v1
Dataset: https://paperswithcode.com/dataset/sst
@ai_machinelearning_big_data
Code: https://github.com/voidism/diffcse
Paper: https://arxiv.org/abs/2204.10298v1
Dataset: https://paperswithcode.com/dataset/sst
@ai_machinelearning_big_data
👍5👎1
This media is not supported in your browser
VIEW IN TELEGRAM
🌄 NAFSSR: Stereo Image Super-Resolution Using NAFNet
Github: https://github.com/megvii-research/NAFNet
Paper: https://arxiv.org/abs/2204.08714v1
Dataset: https://paperswithcode.com/dataset/kitti
Demo: https://colab.research.google.com/drive/1dkO5AyktmBoWwxBwoKFUurIDn0m4qDXT?usp=sharing
@ai_machinelearning_big_data
Github: https://github.com/megvii-research/NAFNet
Paper: https://arxiv.org/abs/2204.08714v1
Dataset: https://paperswithcode.com/dataset/kitti
Demo: https://colab.research.google.com/drive/1dkO5AyktmBoWwxBwoKFUurIDn0m4qDXT?usp=sharing
@ai_machinelearning_big_data
👍11🔥4
Anomaly detection using zscore and modified zscore
https://www.kaggle.com/code/jainyk/anomaly-detection-using-zscore-and-modified-zscore/notebook
@ai_machinelearning_big_data
https://www.kaggle.com/code/jainyk/anomaly-detection-using-zscore-and-modified-zscore/notebook
@ai_machinelearning_big_data
👍5👎4❤1
🛠 MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment
Github: https://github.com/iigroup/maniqa
Paper: https://arxiv.org/abs/2204.08958v1
Dataset: https://paperswithcode.com/dataset/kitti
Demo: https://paperswithcode.com/dataset/pipal-perceptual-iqa-dataset
@ai_machinelearning_big_data
Github: https://github.com/iigroup/maniqa
Paper: https://arxiv.org/abs/2204.08958v1
Dataset: https://paperswithcode.com/dataset/kitti
Demo: https://paperswithcode.com/dataset/pipal-perceptual-iqa-dataset
@ai_machinelearning_big_data
👍6❤3🔥1🤩1
🚰 Simulating Fluids in Real-World Still Images
surface-based layered representation(SLR), which decomposes the fluid and the static objects in the scene, to better synthesize the animated videos from a single fluid imagе
Code: https://github.com/generalizable-neural-performer/gnr
Paper: http://arxiv.org/abs/2204.11335
Project: https://simulatingfluids.github.io/
surface-based layered representation(SLR), which decomposes the fluid and the static objects in the scene, to better synthesize the animated videos from a single fluid imagе
Code: https://github.com/generalizable-neural-performer/gnr
Paper: http://arxiv.org/abs/2204.11335
Project: https://simulatingfluids.github.io/
GitHub
GitHub - generalizable-neural-performer/gnr: Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields…
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis" - generalizable-neural-performer/gnr
👎8👍7
🚀 TorchSparse: Efficient Point Cloud Inference Engine
Github: https://github.com/mit-han-lab/torchsparse
Paper: https://arxiv.org/abs/2204.10319v1
Dataset: https://paperswithcode.com/dataset/nuscenes
Demo: https://paperswithcode.com/dataset/pipal-perceptual-iqa-dataset
@ai_machinelearning_big_data
Github: https://github.com/mit-han-lab/torchsparse
Paper: https://arxiv.org/abs/2204.10319v1
Dataset: https://paperswithcode.com/dataset/nuscenes
Demo: https://paperswithcode.com/dataset/pipal-perceptual-iqa-dataset
@ai_machinelearning_big_data
👍7🔥2🎉1
Мониторинги показывают, что GPU загружены, при этом видно, что они не потребляют электричества. Что делать? Хорошая статья с ответом на этот вопрос.
Будет полезно почитать, даже если вы занимаетесь обучением моделек на домашних GPU.
Будет полезно почитать, даже если вы занимаетесь обучением моделек на домашних GPU.
Хабр
Почему GPU обманывают о своей нагрузке и как с этим бороться
В предыдущем посте я рассказывал о том, как мы строили свои суперкомпьютеры. В этом — поделюсь опытом, который мы накопили, эксплуатируя наши кластеры. Этот опыт будет полезен не только тем, кто...
👍15🔥2😁1😢1
🔹 Exploring a Fine-Grained Multiscale Method for Cross-Modal Remote Sensing Image Retrieval
Github: https://github.com/xiaoyuan1996/AMFMN
Paper: https://arxiv.org/abs/2204.09868v1
Dataset: https://paperswithcode.com/dataset/kitti
@ai_machinelearning_big_data
Github: https://github.com/xiaoyuan1996/AMFMN
Paper: https://arxiv.org/abs/2204.09868v1
Dataset: https://paperswithcode.com/dataset/kitti
@ai_machinelearning_big_data
🔥4👍2🎉2😢1