Machinelearning – Telegram
383K subscribers
4.45K photos
858 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
✈️ HIRL: A General Framework for Hierarchical Image Representation Learning

Github: https://github.com/hirl-team/hirl

Paper: https://arxiv.org/abs/2205.13159v1

Dataset: https://paperswithcode.com/dataset/places205

@ai_machinelearning_big_data
👍15👎1
🔝 PanopticDepth: A Unified Framework for Depth-aware Panoptic Segmentation

Github: https://github.com/naiyugao/panopticdepth

Paper: http://arxiv.org/abs/2206.00468

Dataset: https://paperswithcode.com/dataset/cityscapes

@ai_machinelearning_big_data
👍10
🦠 MaSIF- Molecular Surface Interaction Fingerprints: Geometric deep learning to decipher patterns in protein molecular surfaces.

MaSIF is a proof-of-concept method to decipher patterns in protein surfaces important for specific biomolecular interactions.

Github: https://github.com/LPDI-EPFL/masif

Paper: https://www.nature.com/articles/s41592-019-0666-6

Data: https://github.com/LPDI-EPFL/masif#MaSIF-data-preparation

@ai_machinelearning_big_data
👍15🔥3
🔊A Python library for audio feature extraction, classification, segmentation and applications.

Code: PyAudioAnalysis
👍11👎2🔥1
🪄 Investigating the Role of Image Retrieval for Visual Localization -- An exhaustive benchmark.

Github: https://github.com/naver/kapture-localization

Paper: https://arxiv.org/abs/2205.15761v1

Data: https://paperswithcode.com/dataset/inloc

@ai_machinelearning_big_data
👍9🔥31
@data_analysis_ml - Data analysis blog
5👎2🔥2👍1
🎆 Optimizing Relevance Maps of Vision Transformers Improves Robustness

This code allows to finetune the explainability maps of Vision Transformers to enhance robustness.

Github: https://github.com/hila-chefer/robustvit

Colab: https://colab.research.google.com/github/hila-chefer/RobustViT/blob/master/RobustViT.ipynb

Paper: https://arxiv.org/abs/2206.01161

Dataset: https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S

@ai_machinelearning_big_data
👍18🔥2
UniSRec

The proposed approach utilizes the associated denoscription text of items to learn transferable representations across different recommendation scenarios.

Github: https://github.com/rucaibox/unisrec

Paper: https://arxiv.org/abs/2206.05941v1

Google Drive: https://drive.google.com/drive/folders/1Uik0fMk4oquV_bS9lXTZuExAYbIDkEMW?usp=sharing
🔥8👍3
👍123
OntoMerger: An Ontology Integration Library for Deduplicating and Connecting Knowledge Graph Nodes

OntoMerger is an ontology alignment library for deduplicating knowledge graph nodes

Github: https://github.com/astrazeneca/onto_merger

Paper: https://arxiv.org/abs/2206.02238v1

Documentation: https://ontomerger.readthedocs.io/

@ai_machinelearning_big_data
👍13👎6😱1
👁‍🗨 CVNets: A library for training computer vision networks

Improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection.

Github: https://github.com/apple/ml-cvnets

Examples: https://github.com/apple/ml-cvnets/blob/main/docs/source/en/models

Paper: https://arxiv.org/abs/2206.02680v1

Dataset: https://paperswithcode.com/dataset/coco

@ai_machinelearning_big_data
👍20
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks by Nvidia

Expressive hybrid explicit-implicit network architecture that, together with other design choices, synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.

Github: https://github.com/NVlabs/eg3d

Project: https://nvlabs.github.io/eg3d/

Video: https://www.youtube.com/watch?v=cXxEwI7QbKg&feature=emb_logo&ab_channel=StanfordComputationalImagingLab

Paper: https://nvlabs.github.io/eg3d/media/eg3d.pdf

@ai_machinelearning_big_data
👍20🔥121😱1
Can CNNs Be More Robust Than Transformers?

CNN architectures without any attention-like operations that is as robust as, or even more robust than, Transformers.

Github: https://github.com/ucsc-vlaa/robustcnn

Paper: https://arxiv.org/abs/2206.03452v1

Dataset: https://paperswithcode.com/dataset/imagenet-r

@ai_machinelearning_big_data
👍28🔥1
@itchannels_telegram - data science, machine learning useful channels
👍6
😲 LIVE- Towards Layer-wise Image Vectorization (CVPR 2022 Oral)

New method to progressively generate a SVG that fits the raster image in a layer-wise fashion.

Github: https://github.com/picsart-ai-research/live-layerwise-image-vectorization

Project: https://ma-xu.github.io/LIVE/

Paper: https://arxiv.org/pdf/2206.04655v1.pdf

Colab: https://colab.research.google.com/drive/1s108WmqSVH9MILOjSAu29QyAEjExOWAP?usp=sharing

@ai_machinelearning_big_data
👍32
👍13👎1
🔖 DoWhy | An end-to-end library for causal inference

"DoWhy" is a Python library that aims to spark causal thinking and analysis.

Github: https://github.com/py-why/dowhy

Docs: https://py-why.github.io/dowhy/

Paper: https://arxiv.org/abs/2206.06821v1

Video: https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html

@ai_machinelearning_big_data
👍172